Mapping cetacean distributions in NW European Seas

Peter Evans, James Waggitt, & Jan Hiddink

University of Bangor & Sea Watch Foundation
MERP Consortia

- **£5m, 5 year research programme**
- Funded by the Natural Environment Research Council (NERC) and Department for Environment, Food and Rural Affairs
- Addressing key knowledge gaps in marine ecosystem research
- Involving over 50 UK scientists from 12 research organisations
- Broad and appropriate range of skills
Summary of Work

• Collation of dedicated seabird & cetacean surveys across NW European seas
• Standardisation across surveys by estimating effective strip width and g(0)
• Ecologically informed habitat modelling using environmental variables believed to influence distributions
• Density surface maps with abundance estimates at 10 km & monthly resolution between 1985 and 2017
Thanks to the many organisations contributing data
Data Collation

- 40 main data sources from 11 countries
- 2.6 million km of surveys
- Aerial, digital & vessel effort-based data from 1979 to 2017
- Data used only where sufficient information on survey protocols existed plus variables affecting detection rates
- Cleaned & processed into single spreadsheet
Habitat Modelling: GLM-GEE in a hurdle-model framework

GLM
- Linear or quadratic terms
- Identify functional relationships
- Avoid overfitting relationships

GEE
- Survey source/month as the correlation structure
- Spatial and temporal autocorrelation
- Accounting further for differences among surveys

Hurdle-Model
- Presence-absence and count model
- Reduces problems with zero inflation and overdispersion
- Use knowledge of scale-dependent associations
Standardisation

Summary of esw and g(0) calculations across explanatory variables.

DOL = Bottlenose Dolphin, Common Dolphin, Striped Dolphin, White-Beaked Dolphin, Atlantic White-Sided Dolphin
GOB = Killer Whale, Long-finned Pilot Whale, Risso’s Dolphin, MIN= Minke Whale, POR = Harbour Porpoise, FIN = Fin Whale

<table>
<thead>
<tr>
<th>Group</th>
<th>Measure</th>
<th>LINE</th>
<th>STRIP</th>
<th>2.5m</th>
<th>5m</th>
<th>10m</th>
<th>20m</th>
<th>30m</th>
<th>Aircraft</th>
<th>SS0</th>
<th>SS1</th>
<th>SS2</th>
<th>SS3</th>
<th>SS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOL</td>
<td>esw</td>
<td>0.38</td>
<td>0.17</td>
<td>0.23</td>
<td>0.26</td>
<td>0.29</td>
<td>0.32</td>
<td>0.34</td>
<td>0.21</td>
<td>0.32</td>
<td>0.3</td>
<td>0.27</td>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>GOB</td>
<td>esw</td>
<td>0.54</td>
<td>0.21</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.24</td>
<td>0.44</td>
<td>0.41</td>
<td>0.37</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>MIN</td>
<td>esw</td>
<td>0.47</td>
<td>0.18</td>
<td>0.29</td>
<td>0.32</td>
<td>0.34</td>
<td>0.37</td>
<td>0.39</td>
<td>0.24</td>
<td>0.38</td>
<td>0.35</td>
<td>0.33</td>
<td>0.3</td>
<td>0.28</td>
</tr>
<tr>
<td>POR</td>
<td>esw</td>
<td>0.31</td>
<td>0.17</td>
<td>0.19</td>
<td>0.22</td>
<td>0.26</td>
<td>0.3</td>
<td>0.32</td>
<td>0.16</td>
<td>0.29</td>
<td>0.26</td>
<td>0.24</td>
<td>0.22</td>
<td>0.2</td>
</tr>
<tr>
<td>FIN</td>
<td>esw</td>
<td>0.73</td>
<td>0.21</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.28</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>DOL</td>
<td>g(0)</td>
<td>0.49</td>
<td>0.49</td>
<td>0.6</td>
<td>0.57</td>
<td>0.51</td>
<td>0.4</td>
<td>0.29</td>
<td>0.57</td>
<td>0.58</td>
<td>0.56</td>
<td>0.46</td>
<td>0.44</td>
<td>0.41</td>
</tr>
<tr>
<td>GOB</td>
<td>g(0)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.27</td>
<td>0.29</td>
<td>0.33</td>
<td>0.43</td>
<td>0.53</td>
<td>0.57</td>
<td>0.5</td>
<td>0.47</td>
<td>0.38</td>
<td>0.35</td>
<td>0.33</td>
</tr>
<tr>
<td>MIN</td>
<td>g(0)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.27</td>
<td>0.33</td>
<td>0.46</td>
<td>0.73</td>
<td>0.9</td>
<td>0.3</td>
<td>0.47</td>
<td>0.49</td>
<td>0.5</td>
<td>0.51</td>
<td>0.52</td>
</tr>
<tr>
<td>POR</td>
<td>g(0)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.31</td>
<td>0.29</td>
<td>0.26</td>
<td>0.2</td>
<td>0.15</td>
<td>0.31</td>
<td>0.39</td>
<td>0.31</td>
<td>0.24</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>FIN</td>
<td>g(0)</td>
<td>0.28</td>
<td>0.28</td>
<td>0.17</td>
<td>0.19</td>
<td>0.23</td>
<td>0.32</td>
<td>0.44</td>
<td>0.3</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.27</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Incorporating Environmental Data

Coarse-scale processes likely to influence prey communities and abundances

- Primary Productivity
- Sea Surface Temperature
- Stratification
- Depth

Finer-scale processes likely to influence prey availability

- Tidal Fronts
- Current Speed
- Eddy Potential
- Seabed Roughness
Functional Relationships – Bottlenose Dolphin

a) Coastal

- Strong positive relationship with annual productivity
- Strong negative relationship with current speed

b) Offshore

- No relationship with productivity or temperature
- Strong positive relationship with current speed & seabed roughness
Spatial Patterns – Cetaceans

1.2 million individuals
Spatial Patterns - Seabirds

6.4 million individuals
Monthly Trends: Harbour Porpoise
Monthly Trends: Risso’s Dolphin
Monthly Trends: Long-finned Pilot Whale
Inshore-Offshore Movements: Common Dolphin

- % deviation from the annual mean for each month of the year
- Red denotes positive and blue negative deviations
- Results show a movement towards the shelf edge west of Ireland and into the Bay of Biscay between Dec & May
Long-term Trends in Harbour Porpoise Distribution

Phocoena phocoena

88-97

98-07

08-17
Seasonal Patterns: Cetaceans

- Bottlenose Dolphin
- Common Dolphin
- Fin Whale
- Harbour Porpoise
- Killer Whale
- Minke Whale
- Pilot Whale
- Rissos Dolphin
- Sperm Whale
- Striped Dolphin
- White Beaked Dolphin
- White Sided Dolphin
Annual Patterns: Cetaceans
Seasonal Patterns: Harbour Porpoise

Celtic Seas

North Sea
Harbour Porpoise Movements

Source: Nielsen et al., 2018
Future Impact and Policy Relevance

- Density surface mapping, abundance estimates, population trends (for Marine Strategy Framework Directive)
- Identification of persistent species density hotspots (for Marine Protected Areas)
- Identification of areas of high biodiversity & biomass (for Ecologically or Biologically Significant Areas & Key Biodiversity Areas)
- Risk mapping (for marine spatial planning & ecosystem services)
How can the evidence be used? – MSFD indicators

- M4: Abundance at the relevant temporal scale of cetacean species regularly present

- Large-scale synoptic surveys are currently every 11 years due to resource constraints but this limits ability to determine trends

- Gap filling with spatio-temporal trends from high intensity studies

Sources: MERP Project; Hammond et al., 2017: SCANS III Report
How can the evidence be used? - Marine Protected Areas

- Consideration of density surfaces over large-scale can identify hotspots beyond national boundaries – see, for example, area west of Denmark
Species Diversity, Biomass & Abundance

a) Seasonal modelled relationships for cetacean communities

b) Physical & oceanographic features, prey resources

<table>
<thead>
<tr>
<th></th>
<th>Habitat Complexity</th>
<th>Resources</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal Front</td>
<td>2.18</td>
<td>1.82</td>
<td>1.33</td>
</tr>
<tr>
<td>Seabed Roughness</td>
<td>3.09</td>
<td>2.86</td>
<td>4.28</td>
</tr>
<tr>
<td>Temperature</td>
<td>1.90</td>
<td>1.30</td>
<td>3.7</td>
</tr>
<tr>
<td>Productivity</td>
<td>2.91</td>
<td>2.87</td>
<td>2.55</td>
</tr>
<tr>
<td>Depth</td>
<td>1.86</td>
<td>1.3</td>
<td>1.1</td>
</tr>
</tbody>
</table>

No. of spp.

Biomass

Abund.
Collating Prey Data

Harbour Porpoise diet in NW Europe (by weight)
Modelling of monthly prey distributions: *Herring*
Modelling of monthly prey distributions: Sprat
Collating Prey Data

Temporal trends in fish spawning biomass

- **Sprat**
 - SSB (millions of tonnes) vs. Year
 - Data from 1960 to 2020

- **Cod**
 - SSB (millions of tonnes) vs. Year
 - Data from 1960 to 2020

- **Mackerel**
 - SSB (millions of tonnes) vs. Year
 - Data from 1960 to 2020
Collating Prey Data

Temporal trends in fish spawning biomass

Herring

Whiting

Sandeel
Risk Mapping: Common Dolphins & Trawling

Main Risk Areas
- Channel Western Approaches
- Northwest France
- Northwest Spain
Risk Mapping: Harbour Porpoise & Static Gillnets

Main Risk Areas
- West of Norway & Denmark
- Southwestern North Sea
- Eastern English Channel
- Celtic Sea & SW Approaches
Risk Mapping: Fin Whales & Shipping

Main Risk Areas/times
- Western Bay of Biscay
- North-West Spain
- Mainly Jul-Dec
Products

- New distribution maps for all the major cetacean & seabird species in NW European seas
- Modelled density surface plots & abundance estimates by month and by year from 1985-2017
- Modelled outputs of cetacean & seabird habitat preferences
- Identification of diversity, biomass & density hotspots in NW European seas
- Risk maps for potential impacts of different human pressures
Looking Forward

• Incorporate new cetacean & seabird survey data
• Refine models, incorporating more prey information
• Refine plots of human pressures
• Refine vulnerability & sensitivity indices
• Develop cumulative pressure risk maps
• Predict responses to climate change