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EXECUTIVE SUMMARY 

A Removals Limit Algorithm (RLA) is developed to set limits to anthropogenic mortality of small 

cetacean populations that allow specified conservation objectives to be met. The RLA is similar in 

concept to the Catch Limit Algorithm (CLA) of the IWC’s Revised Management Procedure. The RLA 

comprises a simple one-line population model which is fitted to a time series of estimates of 

abundance to estimate population growth rate and depletion, which are then used in a removals 

calculation. The RLA is tuned through computer simulation to set limits to anthropogenic mortality 

that allow the specified conservation objectives to be met. The robustness of the RLA is determined 

by assessing its performance in a range of computer simulation tests describing uncertainty in our 

knowledge of population dynamics, the data and the wider environment. The RLA developed here is 

illustrated in an example implementation for harbour porpoise in the North Sea using estimates of 

abundance from the three SCANS surveys with initial depletion determined using a time series of 

historical bycatch estimates constructed by making a number of strong assumptions about effort for 

most fleets and appropriate bycatch rates. The RLA developed here is entirely dependent on the 

conservation objectives assumed; the work would need to be repeated if the conservation objectives 

were different. 

 

1. INTRODUCTION 

Fisheries bycatch has been identified as the greatest source of mortality for small cetaceans worldwide 

(Read et al. 2006); in European Atlantic waters the harbour porpoise and common dolphin are 

particularly susceptible (e.g. ICES 2016, 2017; Vinther & Larsen 2004; Tregenza et al. 1997a, b). 

Mechanisms for how limits can be set for marine mammal bycatch and other anthropogenic mortality 

have been discussed for many years. In the USA, the Potential Biological Removal (PBR) equation 

(Wade 1998) is used to assess when anthropogenic mortality is too high and management action is 

required. The procedure for implementing PBR within the US government Marine Mammal 

Protection Act is described in full in MMPA (2018). The International Whaling Commission has 

developed a Revised Management Procedure (RMP) for setting limits to catches of baleen whales 

(IWC 2012). 

In Europe, these issues were considered at a joint ASCOBANS/IWC workshop (IWC 2000). At that 

workshop, a very simple population dynamics model of a nominal harbour porpoise population, with 

a maximum rate of increase of 4% per annum, was used to determine that a mortality rate of 1.7% of 

population size would allow a population to reach and be maintained at 80% of carrying capacity over 

a very long time period.  
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This figure of 1.7% has since been adopted by ASCOBANS, OSPAR and the European Commission 

(see ICES 2012) but it is a very blunt instrument for setting limits to anthropogenic mortality. At an 

ASCOBANS workshop (ASCOBANS, 2015), it was generally agreed that limits for bycatch were 

useful but the appropriateness of the 1.7% limit should be reviewed. 

With this in mind, the primary aim of this work was to develop a “management procedure” for setting 

robust limits to anthropogenic mortality of small cetaceans, the main source of which is fisheries 

bycatch. This work revisits previous work conducted as part of the SCANS-II and CODA projects 

that had a focus on bycatch of harbour porpoise and common dolphin, respectively (SCANS-II 2008; 

CODA 2009; Winship et al. 2006, 2009; Winship 2009). The development of the procedure has been 

reconsidered from scratch but uses the previous work as a reference and there are thus strong parallels 

to previous work.  

The procedure developed here to set limits to anthropogenic mortality of small cetacean populations is 

named the Removals Limit Algorithm (RLA). It is similar in concept to the Catch Limit Algorithm 

(CLA) that lies at the centre of the IWC’s Revised Management Procedure (RMP, IWC 2012). The 

major difference is that the overall purpose of the RMP is to manage commercial whaling and its 

objectives are thus not only to ensure a low risk of population depletion as a top priority but 

secondarily to maximise catches and minimise variation in catch limits. These secondary objectives 

are not relevant to the RLA (see section 2.3), although fishery-related objectives could in principle be 

included. Another difference is that while the primary source of removals data used by the CLA are 

the assumed known catches of baleen whales, the RLA uses estimates of bycatch or other incidental 

anthropogenic mortality, which are both uncertain and potentially biased. 

Note that both the CLA and the RLA set limits to all anthropogenic mortality, whatever the cause.  

The basic idea is to use survey estimates of abundance to estimate the level of depletion of a 

population (expressed as a proportion of its carrying capacity, i.e. unimpacted abundance), and to use 

a simple algorithm to set limits to removals that will ensure that the population ultimately meets 

conservation objectives specified in terms of its depletion. These objectives must be quantitatively 

defined so that the ability of the procedure under development to meet them can be assessed.  

The robustness of the RLA is determined by testing it through computer simulation using a realistic 

population model that is deemed to serve as “truth”. The simulations test how the population 

responds, under management of anthropogenic mortality using the RLA, against a range of plausible 

uncertainties in knowledge of population dynamics, the wider environment and the data used. 

A secondary aspect of this work was to implement the developed procedure in a real example: 

harbour porpoise in the North Sea subject to fisheries bycatch. The availability of new abundance 

estimates from the SCANS-III surveys (Hammond et al. 2017) and somewhat improved series of 

estimates of bycatch mortality for this species in this region mean that this example implementation is 

informative. However, the bycatch limits calculated are entirely dependent on the conservation 

objectives chosen (see section 2.3), the simulation tests (see section 2.5) and how the results of the 

simulation tests are interpreted (see sections 3.4 and 4).  

It is important to state that the RLA calculates limits to anthropogenic mortality, not targets, 

somewhat analogous to speed restrictions for traffic on roads. The restriction is an upper limit; actual 

mortality/speed can be lower depending on circumstances. The purpose here is to provide managers 

with information on levels of mortality that should not be exceeded if specified conservation 

objectives are to be met. How these upper limits are used for management purposes is a policy matter. 

In this report, we first describe the framework for developing the RLA in general terms (section 2) 

and then go on to describe the development of the population model used for simulation, the form of 

the RLA itself, the simulation testing framework, the range of simulation tests performed, and the 

performance metrics used to determine the robustness of the RLA under simulation (section 3).  

Section 4 describes the results of the simulation testing to determine robustness. In section 5, we 

present an example implementation of the RLA using data for the abundance and bycatch of harbour 

porpoise in the North Sea. A brief discussion of the work is given in section 6. 
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2. FRAMEWORK FOR RLA DEVELOPMENT 

2.1 Population model 

The first task is to construct a model of the dynamics of a small cetacean population to be treated as 

“truth” during simulation testing.  The model should be based on realistic values of population 

parameters from first principles, the literature and elsewhere (see section 3.1). The intention is that it 

mimics the dynamics of a real population sufficiently well to serve as an appropriate framework to 

test the performance of the Removals Limit Algorithm (RLA, see section 3.2)) against a range of 

uncertainties in our knowledge (see section 3.4). The model does not need to be the best possible 

description of any particular population. 

During simulations, the population model is used to generate survey estimates of population size, with 

a given level of uncertainty (CV), that are used in the fitting of the RLA.  The fitted RLA is then used 

to calculate the limit to the number of animals that could be removed as a result of human activities 

(from any source) in subsequent years.  Estimates of the number of animals actually removed are 

subtracted from the population each year.  

Here we use the harbour porpoise in the North Sea as a basis for the population model but, because 

the model is largely generic, it is readily modified to mimic the dynamics of any small cetacean 

species, for example the common dolphin, or species of pinniped, which may be under pressure from 

fisheries bycatch or other forms of human activity, such as shooting seals around fishing nets. 

2.2 Removals Limit Algorithm 

The procedure that sets limits to anthropogenic mortality that will allow the conservation objectives 

(see section 2.3) to be met is here called the Removals Limit Algorithm (RLA); this procedure is 

equivalent to the Catch Limit Algorithm (CLA) of the IWC’s RMP. The RLA is fitted to a time series 

of estimates of abundance from surveys and the resulting estimate of depletion (the population 

expressed as a proportion of its carrying capacity, i.e. unimpacted abundance) is used to set a nominal 

removals limit through a simple calculation (see section 3.2).  

2.3 Conservation objectives 

An RLA can only be developed if there are quantitatively defined conservation objectives against 

which its performance can be tested. Previous work on the development of procedures to set limits to 

anthropogenic mortality of small cetaceans (SCANS-II 2008; CODA 2009; Winship et al. 2006, 2009; 

Winship 2009) used the ASCOBANS interim conservation objective as a basis - to allow populations 

to recover to and/or maintain 80% of carrying capacity in the long term. Converting this into a 

quantitative objective that can be used to assess the performance of an RLA requires some 

interpretation about the probability that a population achieves 80% of carrying capacity and the 

meaning of “long term”. This has previously been discussed at the ICES Working Group on Marine 

Mammal Ecology (ICES 2013). 

In the absence of alternative policy guidance, and with the agreement of JNCC, the quantitative 

conservation objective used here was that a population should recover to or be maintained at 80% of 

carrying capacity, on average, within a 100-year period. In simulation tests (see below), this equates 

to the median population level being at 80% of carrying capacity. Discussion of other conservation 

objectives is included in section 6. 

2.4 Simulation testing framework 

An RLA must be robust to uncertainties in our knowledge yet still allow conservation objectives to be 

met; the only practical way to test and determine this is through computer simulation. Therefore, a 

simulation testing framework is needed to determine whether or not a candidate RLA is able to set 

removal limits that allow conservation objectives to be met under scenarios encompassing a plausible 

range of uncertainty (see section 3.3).  
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2.5 Simulation tests 

In the context of development of a procedure to set limits to anthropogenic mortality of small 

cetaceans, uncertainty is equivalent to failures of the assumptions made in the population model about 

the dynamics of real populations (see section 3.1), about the properties of the abundance or bycatch 

data provided to the RLA (see section 3.2) or about the wider environment supporting the populations. 

Sources and plausible levels of uncertainty to which the RLA should be subjected need to be specified 

and implemented in a series of simulation tests (see section 3.4). How well the RLA meets the 

conservation objectives after a simulation test should be determined by a set of performance metrics 

(see section 3.5).  

Before testing robustness to uncertainty, initial simulations need to be done to “tune” the RLA so that 

the limits to anthropogenic mortality calculated allow the population to meet the specified 

conservation objectives. This can be achieved by defining a “base case” simulation that represents a 

realistic appraisal of the true situation and running it with a range of values of a tuning parameter, γ. 

The largest value of γ that allows conservation objectives to be met is then used in subsequent 

robustness simulations. Note that γ will be different for different assumed levels of maximum net 

productivity (see section 3.4). 

2.6 Assessment of Removal Limit Algorithm 

The end point of the simulation testing is to determine the robustness to plausible uncertainties of the 

RLA, as defined, to meet the specified conservation objectives. A decision can then be taken on 

whether or not the tested RLA is robust or whether additional development and/or simulation testing 

is required to modify or tune the RLA further.   

 

3. DEVELOPMENT OF THE RLA  

3.1 Population model 

The population model is based on the harbour porpoise in the North Sea. It is age-structured, with a 

maximum life span of 22 years.  A Pella-Tomlinson like density dependence is used to adjust birth 

rates  

𝑏𝑖𝑟𝑡ℎ 𝑟𝑎𝑡𝑒 = 𝑏𝐾 + (𝑏𝑚𝑎𝑥 − 𝑏𝐾) {1 − (
𝑁

𝐾
)

𝑧

} 

where bK is birth rate at carrying capacity K, bmax is maximum birth rate, N is population size, and the 

exponent z sets the population level at which maximum productivity occurs. N/K is the depletion level 

of the population, also referred to as D. 

Birth rate, br, is calculated every year and the number of new born individuals is then calculated as: 

𝑛𝑒𝑤𝑏𝑜𝑟𝑛𝑠 = ∑ 𝑏𝑟𝑁𝑎𝑀𝑎 

where Na is the number of animals at age a, and Ma is the estimated proportion of the population that 

is mature at age a. Sex ratio is assumed to be 1 to 1.  

Data on age at sexual maturity from harbour porpoises that stranded along the North Sea coasts of the 

UK and Denmark were taken from Winship (2009). The proportion mature at age, Ma, was estimated 

from these data using logistic regression and kept fixed for all simulations. 

Natural and anthropogenic mortality are included using instantaneous survival rates. Base natural 

survival rates were fixed for each age as 0.85 for age 0, 0.87 for age 1 and 0.91 for age 2+ (Winship 

2009) but see also below. Anthropogenic mortality rates vary from year to year depending on 

population size and the total number of removals observed/predicted for that year. Vulnerability to 

removals was set to be 50% higher for age 0 and age 1 than for all other ages based on results from 

population models fitted to data on harbour porpoise in the North Sea (Winship et al. 2007). 
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Within a time-step (year), the population dynamics processes were applied as follows: 

1. Births: the number of new born animals was calculated using the population size at the 

beginning of the year; 

2. Mortality: natural and anthropogenic mortality was applied to all age classes.  

3. Aging: the age of the population was increased by one year and the new born animals 

(calculated in step 1) were aggregated into an age 0 age class. 

4. Survey: simulated survey estimates were drawn (every 6 years in the base case), following 

the approach described in IWC (2004). 

During simulation testing of the RLA (see section 4) the population model was tuned to realise 

different maximum net productivity (MNP) rates by modifying the density dependent and survival 

parameters of the model. 

3.2 Removals Limit Algorithm 

The RLA is a simple population dynamics model describing a population with density dependent 

growth and subject to anthropogenic removals. The RLA is fitted to time series of data on abundance 

(population size) and accounts for the number of removals, each with associated uncertainty. Survey 

estimates are assumed independent among years. 

The dynamics of the RLA are determined by a population growth parameter, μ, that, dependent on the 

depletion of the population, D, determines the number of new individuals added to the population 

𝑁𝑡+1 = 𝑁𝑡 − 𝑐𝑡 + 1.4184 𝜇 𝑁𝑡{1 − 𝐷𝑡
2} 

where Nt is the population size at the beginning of year t, ct is the number of animals removed during 

year t, μ is the growth parameter and Dt is population depletion at time t, that is Nt /K, where K is 

carrying capacity. 

Bayesian methods were used to fit the model, which required prior distributions to be assigned to the 

unknown parameters to be estimated. The parameter μ was assigned a uniform distribution between 0 

and 0.05, which, when multiplied by the constant 1.4184, allows population growth up to 7% per 

annum. This encompasses the value of 4% found in an analysis of harbour porpoise growth rates in 

the Bay of Fundy and the Gulf of Maine (Woodley & Read 2011) but is restricted compared to the 

uncertainty analysis conducted by Caswell et al. (1998), which found rates of around 10% were more 

plausible. The other estimable parameter of the RLA, depletion, was assigned a uniform prior 

distribution between 0 and 1.  

The IWC’s CLA also includes a bias parameter that is multiplied by the survey abundance estimate, 

Nt. The purpose of the bias parameter in the CLA is to reduce the variance of the remaining 

parameters because otherwise removal limits can change markedly each time a new survey estimate is 

added and the algorithm is re-fitted (Cooke 1999). In our simulation trials, inclusion of a bias 

parameter led to poor fitting of the RLA and it was thus omitted. 

Another feature of the IWC’s CLA is the down-weighting of the log likelihood during model fitting, a 

departure from the Bayesian paradigm. This down-weighting was found to improve the fit of the CLA 

to the data and improve performance. In the RLA, we also use the down-weighting of w = 1/16 used 

in the CLA. Other down-weightings of the log likelihood were not explored. 

3.2.1 RLA model fitting 

The RLA was fitted to the input data on abundance using Markov chain Monte Carlo (MCMC) 

methods. This involved using five different functions to (a) find the likelihood of the proposed 

parameters in the prior distributions, (b) find the likelihood of the observed simulated abundance data 

given the parameters (c) bind these two likelihoods to give the posterior distribution, (d) generate a 

new set of parameters and (e) implement the Metropolis Hastings algorithm. The R code to implement 

the RLA, which shows these functions, is given in Appendix 2. 
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3.2.2 Setting limits to removals 

Based on the posterior distribution of the fitted parameters, the RLA sets limits to removals with 

reference to an Internal Protection Level (IPL) using the following removals calculation: 

• If estimated depletion is less than the IPL, removal limit = 0; 

• Otherwise, removal limit = γ * μ * Nt * (Dt - IPL) 

 where γ is a tuning parameter set to ensure that the conservation objectives are met, and IPL is 

set to a depletion of 0.54, the same level as used in the IWC’s CLA. 

The removal limit is taken to be the median of the posterior distribution of the nominal limit based on 

the fitted values of μ and Dt. 

If the IPL parameter were changed, this would result in a different value of the tuning parameter γ to 

ensure that the conservation objectives were met. An alternative way to implement tuning would be to 

use a different value of the posterior distribution. For example, in the CLA, the equivalent catch 

control law replaces γ with a constant and uses the 40.2th percentile of the posterior distribution of the 

nominal limit. The use of the 40.2th percentile also means that tighter posterior distributions resulting 

from more precise abundance estimates will give larger removals limits, and vice versa. This aspect of 

the CLA was not included in the RLA.  

3.3 Simulation testing framework 

To initiate each simulation, the initial age structure of the population must be determined. The initial 

number of animals in each age group, needed to initiate the simulation, was set according to the 

exponential distribution that most resembled the observed frequency of bycaught animals in Danish 

and UK fisheries (see Figure 1).  The age structure of the population changes through the simulation, 

depending on the birth and survival rate parameters of the population model (see section 3.1). 

 

 

 

Figure 1. (a) Observed bycatch age distribution (from data used by Winship 2009); (b) derived initial 

population structure presented as a proportion of the population at each annual age class. 

  

In order to start every simulation at carrying capacity and with a stable population structure, for each 

set of population parameters the population was simulated over a 400-year training period. 

Then, each simulation proceeded according to the following steps: 

1. The population model was run for 30 years using historical removal (bycatch) data, with age-

specific vulnerabilities as stated above, to deplete the population to a specified level. The actual 

number of animals removed each year was drawn randomly from the data (zero-truncated normal 

distribution) with a specified CV. 

(a) (b) 
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2. The RLA was fitted to the survey abundance estimates drawn from the population model (at the 

specified interval), starting immediately after the third of the three existing estimates of 

abundance from SCANS surveys (Hammond et al. 2017). Survey abundance estimates were 

generated according to the procedure used for implementing the CLA described in IWC (2004). 

3. The fitted values of μ and Dt were used in the removals calculation to set the annual removal limit 

for the period until the next survey was due, using a specified value of γ.  

4. The number of animals removed each year was drawn randomly from the removal limit (zero-

truncated normal distribution) with a specified CV. 

5. The population model was run for additional years until the next survey abundance estimate was 

due.  

6. Steps 2-5 were repeated until the 100-year simulation period was complete. 

Each simulation was repeated 100 times. Figure 2 illustrates an example population trajectory subject 

to these simulation steps. 

 

 

Figure 2. Illustration of the population trajectory on the scale of depletion (Nt /K) subject to a 

simulation over 530 years. The initial training period to achieve carry capacity and a stable age 

structure is 400 years. Depletion as a result of historical bycatch, to 0.8 in this case, occurs over years 

400-430. The RLA is first fitted when there are three survey estimates of abundance available at year 

430 (when the simulation test begins), and then subsequently when a new survey estimate becomes 

available. Assessment of whether the simulation achieves conservation objectives occurs after 100 

years at year 530. To keep the illustration simple, this example does not include any uncertainty in the 

bycatch. 

 

3.4 Simulation tests 

As a basis for the simulation testing, a “base case” was established with the following conditions: 

• Maximum net productivity of either 2% or 4% of population size; 

• Initial depletion of 50% K; 

• Survey abundance estimates available every 6 years; 

• Uncertainty in estimates of removals (bycatch) given by a CV of 0.4; 

• Constant carrying capacity, K; 

• No catastrophic episodic events. 
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The population model was run under these conditions (two scenarios – one for each value of the 

maximum net productivity) for a range of values of γ (0.5, 1, 1.5, 2, 2.5, 3) to determine the greatest 

value of γ that allowed the conservation objectives to be met, a process known as tuning. 

Then, using the value of γ determined from the tuning of the base case, a series of simulations was 

conducted to test the performance of the RLA to various sources of uncertainty (equivalent to failures 

of the assumptions made in the base case). These tests included: 

• A different level of initial depletion at the onset of management (60-90% K) – note that these tests 

are “easier” than the depletion of 50% assumed by the base case; 

• A higher level of uncertainty in removals (bycatch) estimates (CV = 0.6);  

• Environmental degradation (carrying capacity, K, declining by 50% over 100 years); 

• Episodic catastrophic events, such as epizootics, that reduce the population by 50% with annual 

probability of 0.02, i.e. on average every 50 years. This simulation test had technical issues and 

the results are not reported. 

The principle is that the RLA should be robust to plausible levels of uncertainty. If the results of a 

simulation test indicate that the variation in performance compared to the base case may compromise 

its robustness, this would need to be taken into account in how the results are used. This might include 

running simulation tests with different values of the tuning parameter. 

3.5 Performance metrics 

Performance metrics used to illustrate results and to determine how well the RLA met conservation 

objectives included: 

• Plot of the 100 simulated population trajectories over 100 years; 

• Plot of animals removed (as determined by the RLA) over 100 years; 

• 5th, 50th (median) and 95th percentiles of final depletion; 

• 5th, 50th (median) and 95th percentiles of minimum depletion; 

• Average annual number of animals removed in the final 12 years; 

• Relative recovery rate (depletion with removals set by the RLA vs depletion with removals set to 

zero). 

 

4. RESULTS OF SIMULATION TESTING 

Performance metrics for the results of the simulation tests are given in Appendix 1. 

4.1 Base case simulations 

Results of the base case simulations (Appendix 1, sections 1.1 and 2.1) indicated that appropriate 

values of γ were 1.0 if true maximum net productivity (MNP) were 2%, and 2.5 if true maximum net 

productivity were 4%. For these values, the median final depletion after 100 years of managing 

bycatch was 80%, as required to meet the conservation objective (Appendix 1, sections 1.1.2 and 

2.1.3).  However, despite meeting the conservation objective, performance of the RLA with MNP = 

4% and γ = 2.5 was rather variable (Appendix 1, section 2.1.3).  A case could perhaps be made that a 

smaller γ should be selected for MNP = 4%. The parameter γ acts as a simple multiplier in the 

removals calculation (section 3.2.2). The higher value of γ determined for MNP = 4% than for MNP = 

2% allows more animals to be removed because a faster growing population can recover from these 

removals more quickly.  

4.2 Different starting depletion levels 

As expected, the results of the simulation tests for levels of starting depletion that were less severe 

than the base case (60%, 70%, 80% and 90% vs 50% of carrying capacity for the base case) showed 
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that the conservation objective was equally or more likely to be met than for the base case (Appendix 

1, sections 1.2 and 2.2). In the plots for these simulations for MNP = 2%, a green line shows the 

trajectory of the population with no removals, for comparison. 

4.3 Decrease in carrying capacity 

The simulations in which carrying capacity decreased to 50% over the 100 year period of the 

simulation showed slightly better performance than the base case for MNP = 2% (Appendix 1, section 

1.3) and slightly worse performance than the base case for MNP = 4% (Appendix 1, section 2.3).  The 

improved performance of the RLA applied to a population with MNP = 2% (Appendix 1, section 1.3) 

may be because once a simulated population has recovered above 80% of K, it responds relatively 

slowly to the decline in carrying capacity. For MNP = 4%, the performance of the RLA was rather 

variable with a median depletion after 100 years of 0.71, somewhat below the conservation objective 

(Appendix 1, section 2.3). Depending on how plausible this modelled scenario is considered to be, 

this result might warrant further consideration, possibly including additional simulations. 

4.4 Increase in bycatch uncertainty 

The simulations in which bycatch uncertainty was increased from a CV of 0.4 to a CV of 0.6, showed 

slightly reduced performance for both MNP = 2% and MNP = 4% (Appendix 1, sections 1.4 and 2.4). 

For MNP=2%, performance was rather consistent with a median final depletion of 0.77. For MNP = 

4%, performance was much more variable but the median final depletion of 0.76 was still close to the 

conservation objective. 

4.5 Summary of simulation results 

Overall, the results show that the RLA with γ = 1 is rather robust to the uncertainties included in the 

simulation testing. Results for the RLA with γ = 2.5 were more variable and not as robust.  At present, 

therefore, a conservative approach could be to consider the RLA with γ = 1 as an appropriate 

procedure for implementation. 

 

5. IMPLEMENTATION OF THE RLA 

The developed RLA was implemented using a time series of bycatch of harbour porpoise in the North 

Sea (area defined by the ICES North Sea Management Unit [ICES 2013]) and estimates of abundance 

for this area from the three SCANS surveys in 1994, 2005 and 2016  to estimate depletion at the time 

of the most recent survey (2016) and the value of the growth parameter, μ. 

Based on the results of the simulation tests, a value of γ = 1 was used to implement the removals 

calculation.  A value of γ = 2.5 was also used to illustrate the difference in results.  

The R code to implement the RLA is given in Appendix 2. 

5.1 Historical bycatch series 

The bycatch series used to estimate initial depletion was created from available information on fishing 

effort and bycatch rates from a number of sources. The aim was first to create a time series of fishing 

effort (days at sea) for the fleets of the main countries fishing gear that could entangle harbour 

porpoise (gillnets, drift nets, tangle nets) operating in the North Sea (Belgium, Denmark, England, 

France, Germany, Netherlands and Scotland), and then to use typical levels of estimated harbour 

porpoise bycatch rate to estimate the number of porpoises that were bycaught in each year. 

The primary source of fishing effort data was a time series from 1966 to 2015 of estimated days at sea 

by English vessels fishing gear that could entangle harbour porpoise - gillnets, drift nets, tangle nets 

(S.P. Northridge pers. comm.). Equivalent data were available for Denmark from 1990 to 2000 (S.P. 

Northridge pers. comm.). 

Estimates of days at sea for 2003-2015 for fleets operating in the North Sea other than the English 

fleet were obtained using data from the STECF database (https://stecf.jrc.ec.europa.eu/dd/effort). For 
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each of the non-English fleets, in the absence of other information, a multiplier relative to the English 

fleet was calculated for each year and applied to the English days at sea. 

For 1966-2002 for non-English fleets other than Denmark, days at sea were estimated using the mean 

multiplier from the STECF data for 2003-2015. For 1966-1989 for the Danish fleet, days at sea were 

assumed equal to the English fleet (the average multiplier in the early 1990s was approximately 1). 

Multipliers for the Danish fleet for 2001 and 2002 were interpolated between 2000 and 2003. 

Three overall estimated bycatch rates were used to calculate a plausible range of estimated total 

annual bycatch from total annual estimated days at sea: 1 porpoise every 5 days at sea (high); 1 

porpoise every 10 days at sea (medium); and 1 porpoise every 20 days at sea (low). These overall 

bycatch rates were based on data from S.P. Northridge (pers. comm.)  The bycatch series generated for 

1966 to 2015 are given in Appendix 3. 

In the implementation presented here, the bycatch time series generated from the high bycatch rate 

has been used. 

5.2 Estimates of abundance 

Estimates of harbour porpoise abundance for the ICES North Sea Assessment Unit area were 

available for 1994, 2005 and 2016 (Hammond et al. 2017). These were: 289,150, 355,408 and 

345,373, with CVs of 0.14, 0.22, and 0.18, respectively. The estimates for 1994 and 2005 result from 

reanalyses of SCANS and SCANS-II data to ensure consistency with the 2016 estimate (see 

Hammond et al. 2017). 

5.3 Results 

To ensure representative results, the RLA was implemented 10 times and the average values of the 

estimated parameters taken. 

Typical posterior distributions of: estimated depletion at the time of the final survey (2016); the 

carrying capacity derived from this; and the growth parameter, μ are shown in Figure 3. 

The posterior distributions show little support for the population of harbour porpoises in the North Sea 

being heavily depleted or for the current carrying capacity being less than 350,000 animals. The 

almost uniform posterior distribution of the growth parameter shows that the available data are unable 

to improve on the assumed prior distribution and the estimated value (median) is halfway between the 

limits placed on the prior. 

Median values of the estimated parameters were: 

• Depletion in 2016 = 0.76 

• Derived carrying capacity in 2016 = 458,000 

• Growth parameter = 0.025 

With γ = 1 in the removals calculation, the removals limit was 1,856 animals per year for a six-year 

period until a new survey estimate is assumed to become available in 2022, at which point the RLA 

would be implemented again with this estimate and including bycatch estimates for 2016-2021. For 

comparison, with γ = 2.5, the removals limit was 4,641 per year. 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 3. Posterior distributions of: (a) estimated depletion at the time of the final survey (2016); (b) 

the carrying capacity derived from estimated depletion and the final abundance estimate; (c) the 

growth parameter, μ. 
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6. DISCUSSION 

6.1 Results presented 

The work achieved so far on developing a Removals Limit Algorithm and its example implementation 

for harbour porpoises in the North Sea comes with a considerable number of assumptions and caveats 

(see below). Nevertheless, the results provide some indication of the level of current depletion of the 

harbour porpoise population in the North Sea (around 75% of pre-bycatch population size) and the 

level of annual anthropogenic mortality that the population might be able to sustain and still meet the 

specified conservation objective (around 1,800 animals). The calculated removal level is around half 

of one percent of current population size. This level of annual mortality is similar to that generated by 

implementations of the IWC’s CLA, which is perhaps not surprising given the similarity between the 

RLA and the CLA.  

However, it is much smaller than the 1.7% of population size currently adopted by ASCOBANS, 

OSPAR and the European Commission. The disparity is partly because the RLA calculates more 

“conservative” removal limits to ensure that it is robust to the uncertainties tested through simulation. 

It is also partly because the tuning level chosen represented a maximum net productivity (MNP) of 

2% per year (γ = 1), rather than the 4% used to generate the 1.7% bycatch limit. If the RLA were used 

with a tuning level representing MNP = 4% (γ = 2.5), our results give an annual bycatch of around 

1.3% of population size, although results of the simulation tests were less than satisfactory for this 

level of tuning. A MNP of at least 4% is likely for harbour porpoise populations (Woodley & Read 

2011; Caswell et al. 2008), so it may be useful to rerun the simulation trials using a tuning of γ = 1.5 

or 2 to see if RLA performance improves over using γ = 2.5. 

6.2 Data requirements 

The RLA is initiated with a starting depletion level and at least one estimate of abundance. The 

starting depletion level could be estimated using historical removals data (as in our simulations and 

example implementation) or a value could be provided.  Subsequently, minimum data requirements 

are estimates of annual removals (bycatch in our example implementation) and estimates of 

abundance every 6 years. 

Estimation of bycatch is challenging. It requires data on fishing effort from relevant fleets and on 

bycatch rates per unit of fishing effort. As described above (section 5.1), fishing effort information is 

incomplete and while that remains the case, any estimates of bycatch from available data will likely 

be negatively biased. Estimates of bycatch rates are available but, as also described above, they come 

from a limited number of studies that generated highly variable results. 

In our example implementation of the RLA for harbour porpoise in the North Sea we generated an 

annual removals limit applicable to the next six years. In a real implementation, after six years, 

another estimate of abundance would be available, estimates of bycatch would be provided for the six 

previous years, and the RLA would be refitted. If the estimates of bycatch are negatively biased, the 

RLA would tend to over-estimate depletion (i.e. estimate it as a higher proportion of carry capacity 

than it should be) and to set removals limits that were too high. Over time this would be somewhat 

compensated by estimates of abundance that reflected true population size but the overall effect would 

remain. If true bycatch were greater than the removals limits but negatively biased estimates provided 

were smaller than the limits, conservation objectives would likely not be achieved.  

Future work could explore incorporation of the impact on RLA performance of bias in estimates of 

future bycatch leading to the determination of an alternative level of tuning. The challenge would be 

to select levels of bias that were plausible. A practical solution could be to determine appropriate 

tunings for a range of assumed bias in bycatch estimates, with a view to deciding which level of bias 

was realistic for a real implementation. This could include consideration of biases in fishing effort 

data and in estimates of bycatch rate, separately. Results from these simulation tests could also be 

used to put demands on the quality of bycatch data acceptable for implementation. 
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6.3 Additional assumptions 

Our results are dependent on the appropriateness of the population model as a suitable test bed, the 

definition of the base case simulation and the simulations to test the performance of the RLA to 

violations in the assumptions made in the base case. All of these could be formulated differently, 

which would alter the results. If any factors that had not been considered in simulation tests were of 

particular concern in a proposed implementation, these would need to be considered as additional 

simulation trials to ensure robustness of the RLA. 

6.4 Population structure 

The IWC’s RMP includes additional “multi-stock rules”, which determine how catch limits generated 

by the CLA are to be distributed spatially based on knowledge of population structuring. This is 

because if there is population structure (incomplete mixing of animals between different areas) and 

anthropogenic activities are managed without taking this into account so that removals may be 

concentrated in particular areas, there is a potential danger of depletion of “local” populations.  

The current advice from ICES is that there is a single “Management Unit” (MU) for harbour porpoise 

in the North Sea (ICES 2013). However, there has been considerable discussion about whether 

genetic differences among animals in this area might warrant the delineation of more than one MU 

(e.g. Evans & Teilmann 2009; ICES 2012).  ICES (2013) recommended that this be explored as part 

of work to develop models to set limits to bycatch to meet specified conservation objectives. This was 

explored to some extent by Winship (2009) but there has been insufficient time in the current project 

to pursue this. Adding population structure to the current RLA will therefore require additional 

development.  

6.5 Conservation objectives and management 

All our results are also entirely dependent on the quantitative definition of the conservation objective 

used. If a different conservation objective were selected, a new set of simulations would be required to 

ensure that the developed RLA generated removal limits that met the new conservation objective. For 

example, an alternative way to define the ASCOBANS interim objective could be that a population 

should recover to or be maintained at 80% of carrying capacity within a given period, 95% of the time 

(Winship 2009; ICES 2013). This would result in smaller bycatch limits and the population being 

maintained at a higher percentage of carrying capacity on average; 85-90% based on previous 

equivalent work (Winship 2009). For comparison, the PBR procedure (Wade 1998) was developed to 

achieve the conservation objective that a population should recover to or be maintained at 50% of 

carrying capacity within 100 years, 95% of the time. 

More generally, managers would need to determine how the results of any RLA implementation are 

used in practice. For example, the aim of ASCOBANS is ultimately to reduce bycatch to zero, or at 

least levels approaching zero, but current mitigation is unable to guarantee near-zero bycatch in 

fishing gear and it is possible that this might always be the case. The RLA is intended as a tool to 

provide useful information in this context. 
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Appendix 1 

Results of the simulation tests of RLA performance 

Results are given for: 

1. Base case simulations to determine the appropriate value of the tuning parameter, γ; 

The base case is defined as: 

• Maximum net productivity (MNP) = 2% or 4%; 

• Initial depletion of 50% of K; 

• Survey abundance estimates available every 6 years; 

• Uncertainty in bycatch estimates given by a CV of 0.4; 

• Carrying capacity assumed not to change; 

• No catastrophic episodic events. 

For the selected value of γ for each of MNP = 2% and MNP = 4%: 

2. Simulations with different levels of starting depletion (60%, 70%, 80%, 90% of K); 

3. A simulation with carrying capacity decreasing to 50% over 100 years; 

4. A simulation with bycatch uncertainty given by a CV of 0.6. 

The simulation with a catastrophic event occurring at an annual probability of 0.02 with the effect of 

reducing population size by 50% had technical problems and could not be implemented. 

 

1. Maximum net productivity = 2% 

1.1 Base case simulations with varying tuning parameter γ 

1.1.1 γ = 0.5 

 

  

 

MNP = 2%;  γ = 0.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.85 0.89 0.92 

Minimum observed depletion 0.45 0.52 0.59 
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Average annual removals over final 12 years 592 1,744 2,937 

 

 

 

1.1.2 γ = 1.0 

 

  

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.68 0.80 0.88 

Minimum observed depletion 0.47 0.53 0.60 

Average annual removals over final 12 years 1,108 3,319 5,051 

 

 

 

1.1.3 γ = 1.5 

 

  
 

 

MNP = 2%;  γ = 1.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.21 0.67 0.85 
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Minimum observed depletion 0.16 0.49 0.56 

Average annual removals over final 12 years 1,226 4,403 6,815 

 

 

 

1.2 Simulations with different initial depletions; γ = 1.0 

Initial depletion = 60% of K 

 

  

The green curve is the population trajectory with zero bycatch. 

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.69 0.82 0.88 

Minimum observed depletion 0.49 0.58 0.63 

Average annual removals over final 12 years 255 3,201 4,908 
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Initial depletion = 70% of K 

 

  

The green curve is the population trajectory with zero bycatch. 

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.73 0.81 0.88 

Minimum observed depletion 0.58 0.67 0.73 

Average annual removals over final 12 years 1,534 3,349 5,102 

 

Initial depletion = 80% of K 

 

  

The green curve is the population trajectory with zero bycatch. 

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.76 0.82 0.87 

Minimum observed depletion 0.64 0.73 0.79 

Average annual removals over final 12 years 1,856 3,464 5,041 
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Initial depletion = 90% of K 

 

  

The green curve is the population trajectory with zero bycatch. 

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.73 0.82 0.86 

Minimum observed depletion 0.55 0.75 0.81 

Average annual removals over final 12 years 1,685 3,434 5,011 

 

 

1.3 Carrying capacity decreasing to 50% over 100 years; γ = 1.0 

 

 
 

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.74 0.89 1.04 

Minimum observed depletion 0.43 0.53 0.59 

Average annual removals over final 12 years 280 3,310 5,038 
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1.4 Bycatch uncertainty CV = 0.6; γ = 1.0 

 

 
 

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.62 0.77 0.89 

Minimum observed depletion 0.43 0.51 0.59 

Average annual removals over final 12 years 197 3,697 5,704 
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2. Maximum net productivity = 4% 

2.1 Base case simulations with varying tuning parameter γ 

2.1.1 γ = 1.5 

 

  

 

MNP = 4%;  γ = 1.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.72 0.87  0.96 

Minimum observed depletion 0.33  0.47  0.57 

Average annual removals over final 12 years 576  6,047  9,429 

 

 

2.1.2 γ = 2.0 

 

  

 

MNP = 4%;  γ = 2.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.34  0.82  0.97 

Minimum observed depletion 0.10  0.45  0.56 

Average annual removals over final 12 years 0 6,863  11,652 
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2.1.3 γ = 2.5 

 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.02  0.80  0.95th 

Minimum observed depletion 0 0.46  0.55 

Average annual removals over final 12 years 0   7,278  13,052 

 

 

 

2.1.4 γ = 3.0 

 

  

 

MNP = 4%;  γ = 3.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0 0.75  0.92 

Minimum observed depletion 0 0.43  0.53 

Average annual removals over final 12 years 0   7,051 14,845 
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2.2 Simulations with different initial depletions; γ = 2.5 

2.2.1 Initial depletion = 60% of K 

 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.089 0.82 0.93 

Minimum observed depletion 0.01 0.55 0.63 

Average annual removals over final 12 years 0 7,251 12,575 

 

 

2.2.2 Initial depletion = 70% of K 

 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.65 0.84 0.94 

Minimum observed depletion 0.35 0.66 0.72 
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Average annual removals over final 12 years 2,379 6,511 11,471 

 

 

2.2.3 Initial depletion = 80% of K 

 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.59 0.84 0.93 

Minimum observed depletion 0.39 0.70 0.80 

Average annual removals over final 12 years 2,258 6,977 11,526 

 

 

2.2.4 Initial depletion = 90% of K 

 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 
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Final depletion after 100 years 0.69 0.85 0.94 

Minimum observed depletion 0.40 0.70 0.87 

Average annual removals over final 12 years 2,677 7,057 11,900 

 

 

2.3 Carrying capacity decreasing to 50% over 100 years; γ = 2.5 

 

 

 

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.03 0.71 1.04 

Minimum observed depletion 0 0.53 0.91 

Average annual removals over final 12 years 0 4,363 13,561 

 

 

2.4 Bycatch uncertainty CV = 0.6; γ = 2.5 
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MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0 0.76 0.95th 

Minimum observed depletion 0 0.35 0.56 

Average annual removals over final 12 years 0 6,716 13,350 
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Appendix 2 

R code used to implement the RLA 

 

# 

############################################################################## 

###### Code to implement the RLA for harbour porpoise in the North Sea ####### 

############################################################################## 

# 

require(truncnorm) 

# 

## Input data 

# 

obs = c(289150,355408,345373) ## SCANS survey abundance estimates 

CVs = c(0.14,0.22,0.18) ## SCANS survey CV estimates 

# 

byc.series = read.csv(file.choose(), header=TRUE) 

byc.series = byc.series[byc.series$year<2016,] 

bycatch.years = 1966:byc.series[length(byc.series$year),1] 

byc = c(byc.series$hi) ## select bycatch series to use 

name.byc = "high bycatch" 

# 

#bycatch.years = 1966:2015 

#byc = rep(0,50) 

#name.byc = "zero bycatch" 

# 

idx = c(which(bycatch.years%in%c(1994,2005)),length(bycatch.years)+1) ## index of bycatch years 

where we have a survey 

# 

## Transform for lognormal likelihood 

# 

sd_scale=sqrt(log((CVs)^2+1)) 

mean_scale=log(obs)-.5*log((CVs)^2+1) 

# 

################################################ 

###### Functions to fit the Bayesian RLA ####### 

################################################ 

# 

Fit.RLA <- function(parame){ 

  DT = parame[1] 

  mu = parame[2] 

  #bias = parame[3] 

  bias=1 

  carry=obs[length(obs)]/DT # the population begins at carrying capacity 

  est=rep(NA,length(byc)+1)  

  est[1]=carry 

  for(i in 2:length(byc)){ 

    est[i]=max(est[i-1]-byc[i-1]+1.4184*mu*est[i-1]*(1-(est[i-1]/carry)^2),0.1,na.rm=T) 

  } 

  

log.lik.lognorm=sum(dlnorm(x=est[idx]*bias,meanlog=mean_scale,sdlog=sd_scale,log=T),na.rm=T) 

  return(list(lik=log.lik.lognorm)) 

} 
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# 

MCMC_metrop.proposal <- function(start.val, iterations){ 

  chain = array(dim = c(iterations+1,3)) 

  chain[1,] = start.val 

  for (i in 1:iterations){ 

    propos = proposal(chain[i,]) 

    while(any(c(propos<0 ,propos>c(1,.05,5/3)))){propos = proposal(chain[i,])} # all new values must 

be inside distribution 

    #acceptance.probab = exp(posterior(propos)[1] - posterior(chain[i,])[1]) ## raw likelihood 

    acceptance.probab = exp(posterior(propos)[1]/16 - posterior(chain[i,])[1]/16) ### weighted 

likelihood 

    if (runif(1) < acceptance.probab){chain[i+1,] = c(propos)} 

    else{chain[i+1,] = c(chain[i,])} 

  } 

  return(chain=list(chain=chain)) 

} 

# 

prior.lik <- function(parame){ 

  DT = parame[1] 

  mu = parame[2] 

  bias = parame[3] 

  DT.prior = dunif(DT, min=0.0001, max=1, log = T) ## in log 

  mu.prior = dunif(mu, min = 0.0001, max=.05, log = T) ## in log 

  bias.prior = dunif(bias, min=0, max=5/3, log = T) ## in log 

    return(DT.prior + mu.prior + bias.prior) ## in log 

} 

# 

posterior <- function(parame){return (Fit.RLA(parame)$lik + prior.lik(parame))} 

# 

## To reject any proposals that fall outside distribution 

# 

proposal <- function(parame){ 

  #return(c(rnorm(3,mean = parame, sd= c(0.002,0.0005,.005)))) ###  check sensitivity of these 

transition sd 

  return(c(rtruncnorm(1, a=0, b=1, mean = parame[1], sd = 0.001), ## Depletion 

           rtruncnorm(1, a=0, b=0.05, mean = parame[2], sd = 0.0005), ## mu (grow param) 

           rtruncnorm(1, a=0, b=5/3, mean = parame[3], sd = 0.005))) ## bias parameter 

} 

# 

################################ 

###### Implement the RLA ####### 

################################ 

# 

start.val = c(0.5,0.025,0.5) 

number_of_iterations = 10000000 

burn_in = 1000000 

# 

run = MCMC_metrop.proposal(start.val, number_of_iterations) 

select=seq(burn_in,length(run$chain[,1]),by=number_of_iterations/3000) 

# 

## Plots of posterior distributions 

# 

par(mfrow=c(2,2)) 

hist(obs[length(obs)]/run$chain[,1],main="Carrying capacity",xlab="Population size") 

hist(run$chain[,1],main="Depletion at final survey",xlab="Proportion of carrying capacity") 
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hist(run$chain[,2],main="Growth parameter",xlab="mu") 

#hist(run$chain[,3],main="Bias") ## if applicable 

# 

########################### 

#### Set bycatch limit #### 

########################### 

# 

## Parameters 

# 

depletion = mean(run$chain[,1]) # quantile(run$chain[,1],probs = 0.5) # in case we want a quantile 

instead of mean 

carry = obs[length(obs)]/depletion 

IPL = 0.54 

gamma = 1 ### for MSY=2% 

#gamma = 2.5 ### for MSY=4% 

mu = quantile(run$chain[,2],probs = 0.5)  

#mu = mean(run$chain[,2]) # in case we want mean instead of a quantile 

# 

## Calculate the difference between depletion and the IPL 

# 

dif=obs[length(obs)]/carry-IPL 

dif[which(dif<0)]=0 

# 

## Calculate bycatch limit 

# 

new.byc=rep(gamma*mu*obs[length(obs)]*(dif)) 

# 

# List results 

# 

name.byc 

depletion 

carry 

mu 

gamma 

new.byc 

# 
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Appendix 3 

Bycatch time series used to implement the RLA 

 

year hi med lo 

1966 2004 1002 501 

1967 1639 820 410 

1968 1199 599 300 

1969 788 394 197 

1970 998 499 249 

1971 791 395 198 

1972 524 262 131 

1973 797 398 199 

1974 922 461 231 

1975 1337 668 334 

1976 2370 1185 592 

1977 2952 1476 738 

1978 4746 2373 1186 

1979 3792 1896 948 

1980 4126 2063 1032 

1981 5175 2587 1294 

1982 6246 3123 1562 

1983 6147 3073 1537 

1984 6352 3176 1588 

1985 6005 3002 1501 

1986 6824 3412 1706 

1987 9960 4980 2490 

1988 10023 5011 2506 

1989 10152 5076 2538 

1990 8336 4168 2084 

1991 9749 4874 2437 

1992 11062 5531 2765 

1993 11356 5678 2839 

1994 12363 6182 3091 

1995 11887 5944 2972 

1996 11060 5530 2765 

1997 11370 5685 2843 

1998 9905 4952 2476 

1999 8512 4256 2128 

2000 7360 3680 1840 

2001 7471 3735 1868 

2002 7632 3816 1908 

2003 7462 3731 1865 

2004 5239 2619 1310 

2005 4435 2217 1109 

2006 4094 2047 1023 
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2007 2616 1308 654 

2008 3013 1507 753 

2009 2882 1441 720 

2010 3109 1554 777 

2011 3505 1752 876 

2012 3207 1603 802 

2013 2733 1366 683 

2014 2804 1402 701 

2015 2552 1276 638 

 

 

 


