
Current cetacean bycatch issues in European waters April 17th 2023

Monitoring the effectiveness of pingers in reducing cetaceans' bycatch in Bulgarian bottom set gillnets

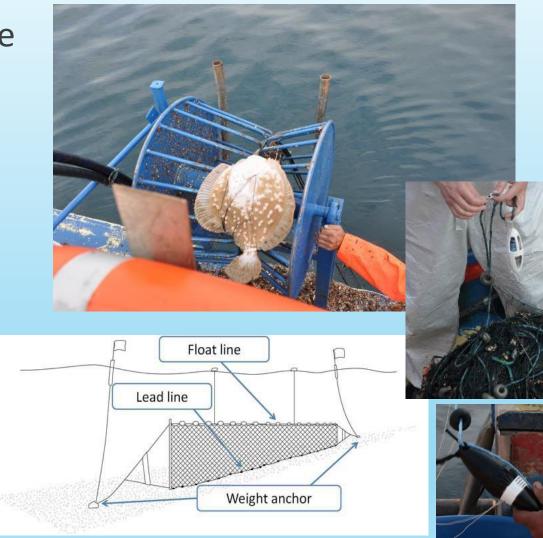
Dimitar Popov, Galina Meshkova

Green Balkans NGO

Plovdiv University – Zoology Department of Biological Faculty

Turbot fishery in Bulgaria

Executive Agency of Fisheries and Aquaculture (EAFA): Number of permits in Bulgaria

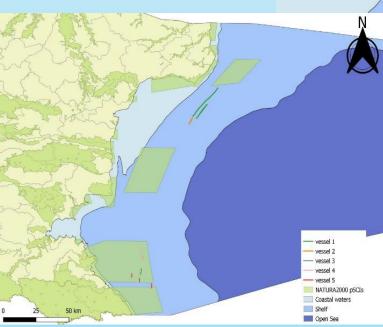

2019	2020	2021	2022
116	124	126	126

Involved vessels:

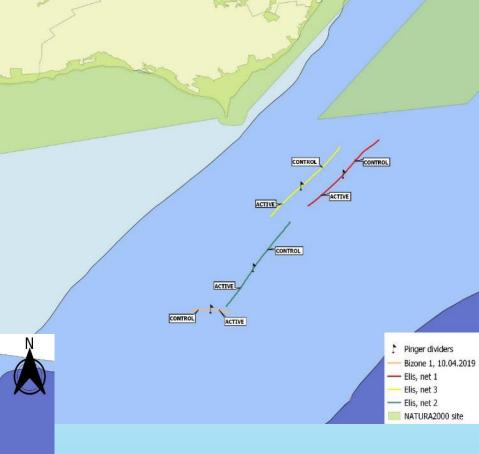
2019	2020	2021	2022
5	4	3	6

Typically 2 main fishing campaigns: spring and summer Soaking time: 7 to 20 days

Used types of pingers: Future Oceans – 10 kHz, 132 dB NETGUARD Future Oceans – 70kHz, 145 dB NETGUARD Porpoise Alerting Devices (PAL) – 10 kHz, 132 dB by F³: Maritime Technology


2019

Material and methods

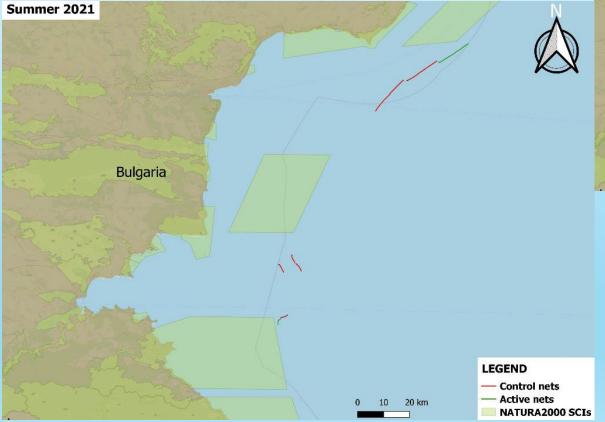

Shelf waters of Bulgarian Black Sea waters Independent observers Mixed strings of active and control sections Spring – 50,28 km; Summer – 51,65 km

 $Bycatch = \frac{individuals}{day.km^2}$

Balchi

2020 Material and methods

Shelf waters of Bulgarian Black Sea waters Independent observers Separate strings of active and control nets Spring – 82,76 km; Summer – 71,8 km

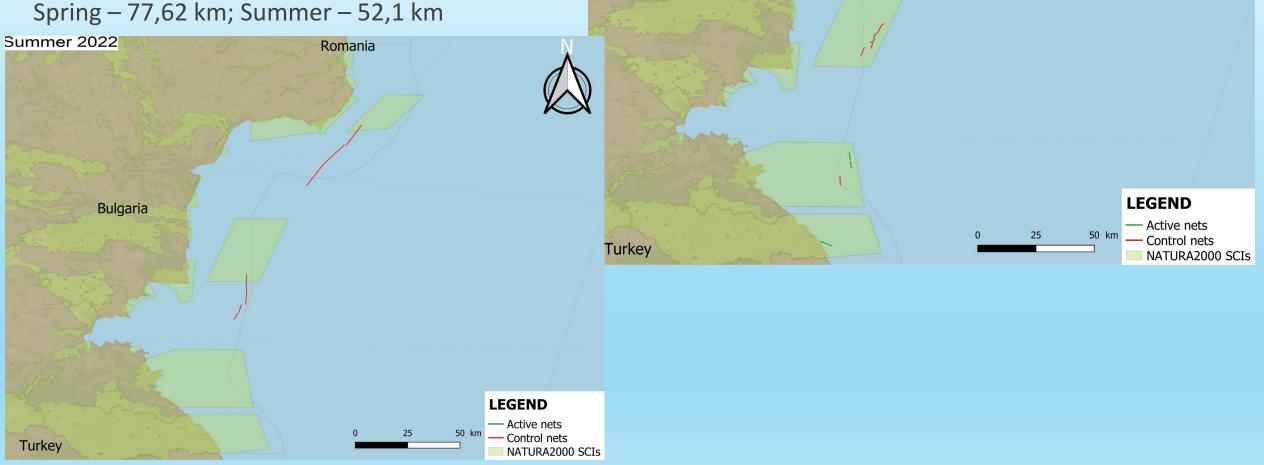


Romania

2021

Material and methods

Shelf waters of Bulgarian Black Sea waters Independent observers Separate strings of active and control nets Spring – 39,12 km; Summer – 50,2 km



2022

Material and methods

Shelf waters of Bulgarian Black Sea waters Independent observers Separate strings of active and control nets Spring – 77,62 km; Summer – 52,1 km

Spring 2022

Bulgaria

Romania

Sample size: **4,3** % of licensed fishing vessels for turbot fishery in 2019

Soaking time: 18-26 days in spring; 7-20 (91*) days in summer/autumn at depth: 68-88 m Total: 105 bycaught cetaceans – 1 *Tursiops truncatus* and 104 *Phocoena phocoena*

Seasonal distribution: significant increase in bycatch in summer – from 6 to 99!! *Phocoena phocoena* bycatch rate in summer - **2,2 ind./km** was amongst the highest reported rates for the Black Sea.

Sample size: 3,2 % of licensed fishing vessels for turbot fishery in 2020

- Soaking time: 14-31 days in spring; 7-14 days in summer/autumn at depth: 45-83 m
- **Total**: 47 (9 in spring and 38 in summer) bycaught cetaceans 1 Tursiops truncatus; 3 Delphinus delphis and 43 Phocoena phocoena

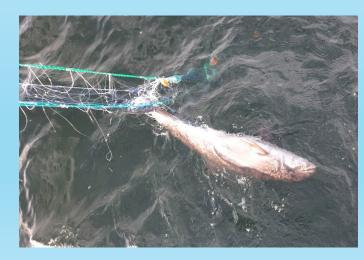
Seasonal distribution: higher bycatch in summer!!!

Sample size: 2,4 % of licensed fishing vessels for turbot fishery in 2021 Soaking time: 13-16 days in spring; 12-26 days in

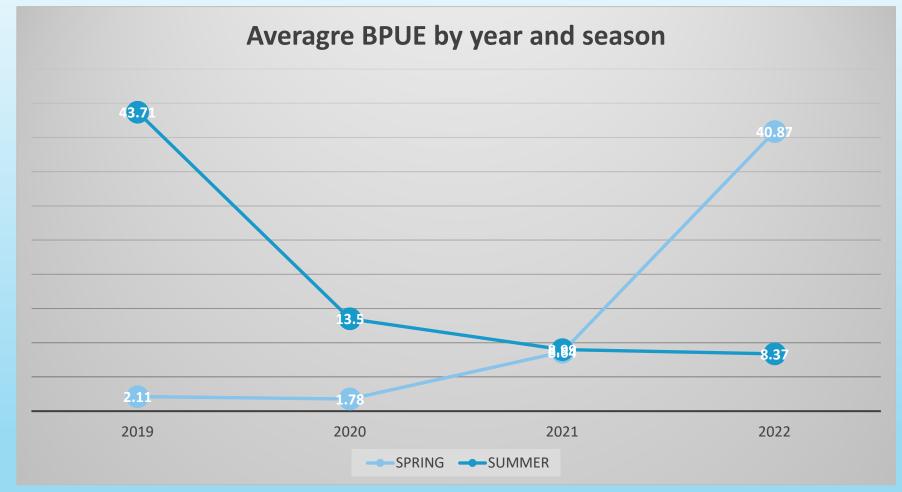
summer at depth: 70-86 m

Total: 31 bycaught cetaceans – 2 Tursiops truncatus and

29 Phocoena phocoena


Seasonal distribution: higher bycatch in summer (21)

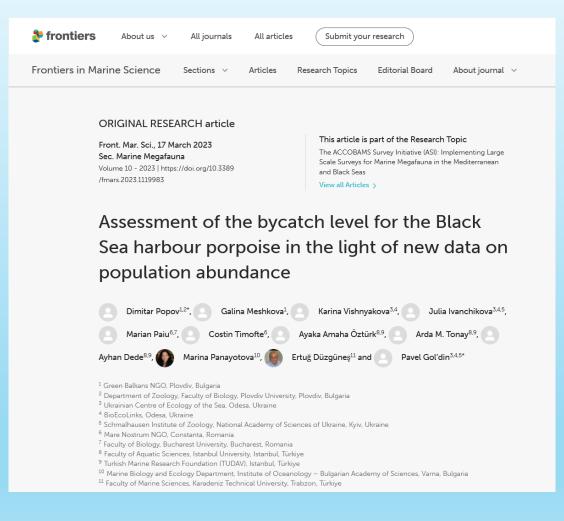
compared to spring (10)!!!


Sample size: 4,8 % of licensed fishing vessels for turbot fishery in 2022 Soaking time: 10-19 days in spring; 13-15 days in summer at depth: 50-94 m Total: 67 bycaught cetaceans – 8 *Tursiops truncatus* and 59 *Phocoena phocoena* Seasonal distribution: higher bycatch in spring (21) compared to summer (10)!!!

Results 2019-2022

Seasonal distribution: change in 2022, impact of war in Ukraine?

Results from the study were used for estimation of Black Sea harbour porpoise bycatch level in Bulgarian Black sea waters:


	2019	2020	2021	2022
Fishing vessels	116	124	126	126
Fishing operations, median	2	5.5	6	3
Bycatch per operation, median	1	1	0.5	2
Total bycatch, median	232	682	378	756
Share of population	2.08%	10.82%	11.65%	5.02%
Total bycatch based on ind./km	1815	529	552	784
Share of population	16.29%	10.82%	16.99%	5.21%
Total bycatch (Northridge&Fortuna, 2008)	2515±1176	1376±525	1246±476	1295±230
CV	46.75%	38.14%	38.18%	17.77%
Share of population	22.58%	28.14%	38.39%	8.61%

Results from the study were used for estimation of Black Sea harbour porpoise bycatch level in the Black Sea:

Popov D, Meshkova G, Vishnyakova K, Ivanchikova J, Paiu M, Timofte C, Amaha Öztürk A, Tonay AM, Dede A, Panayotova M, Düzgünes, E and Gol'din P (2023) Assessment of the bycatch level for the Black Sea harbour porpoise in the light of new data on population abundance. Front. Mar. Sci. 10:1119983. doi: 10.3389/fmars.2023.1119983

https://www.frontiersin.org/articles/10.3389/fmars.2 023.1119983/full

CONCLUSION: EVEN THE MOST CONSERVATIVE ESTIMATE EXCEEDS THE MOST LIBERAL REMOVAL RATE FOR BLACK SEA HARBOUR PORPOISE

Results of pingers' trials: FutureOceans 10 kHz

Used on different vessels and tested in:

- different configuration mixed sets of active/control in 2019 and separate sets afterwards
- spacing (70, 100 and 140 m)

Not significant (t-test, p>0.05)

FO 10 kHz	Control net	Active
Year	Bycatch (ind./km ² *days)	Bycatch (ind./km ² *days)
2019	7,12	0,00
	2,16	2,38
	0,00	2,29
	0,00	8,16
	35,84	55,56
	103,90	86,58
	16,03	0,00
		16,03
2020	2,42	2,64
	0,00	0,00
	14,88	0,00
2021	26,46	0,00
	20,25	0,00
	0,00	0,00
2022	100,00	150,00
	150,00	
	0,00	0,00
	42,10	0,00
Total	521,15	323,64
Bycatch red	uction	37,90%

Results of pingers' trials: FutureOceans 70 kHz

Used on different vessels and tested in:

- different configuration mixed sets of active/control in 2019 and separate sets afterwards
- spacing (140, 200 and 280 m)

FO 70		
kHz	Control net	Active
	Bycatch	Bycatch
Year	(ind./km ² *days)	(ind./km ² *days)
2019	0,00	0,00
	0,00	6,67
	78,13	74,40
	56,69	0,00
2020	0,00	0,00
2022	0,00	42,10
Total	134,81	123,17
Bycatch re	duction	8,64%

Not significant (t-test, p>0.05)

Results of pingers' trials: PAL 10 kHz

			Stand. net	PAL net	Outcome of t-test: paired samples,	
Year	Season	Vessel	bycatch	bycatch	one-sided	
2020	Spring	1	5,67	0	Unrethesis, DAL reduces by setch in	
2020	Summer	1	32,18	14 XX	Hypothesis: PAL reduces bycatch in	
2020	Summer	1	27,55	9,92	nets set at the same time and in the	
2020	Summer	1	6,87	3.13	same area	
2021	Spring	1	9,45	0	p = 0.003115	
2021	Spring	1	6,54		Conclusion: Significant at 0.05	
2022	Spring	1	26,46		level	
2021	Summer	1	17,8	0		
2021	Summer	1	45,79			
2021	Summer	1	20,25			
		Sum	198,56	27,93		
		Bycatch reduction		85,93%		

CONCLUSIONS:

Significant difference between spring and summer (Mann-Whitney, U=266.5, p<0.05) for period 2019-2021 but not significant when 2022 added.

No significant difference in bycatch rates between active and control nets when FO pingers are used (t-test, p>0.05).

Significant reduction (86%) of bycatch with PALs (t-test, p<0.05)

Results of pingers' trials: PAL 10 kHz

RECOMMENDATIONS:

- Report to Bulgarian MOEW, MAF and EAFA for further trials of PAL pingers;
- No action by authorities even after infringement procedure by EC against Bulgaria has been started in June 2022;
- **CONCETA project in Turkey included trials of PAL pingers in Turkey around Sinop;**
- Presentation of results during GFCM WGFiT and BSWG in 2021 resulted in inclusion of trials in BlackSea4Fish project that are currently under way in Romania, Bulgaria an Turkey.

Bycatch monitoring was conducted within Support MSFD implementation in the Black Sea through establishing a regional monitoring system of cetaceans (D1) and noise monitoring (D11) for achieving GES CeNoBS **project co-funded by European Commission** <u>www.cenobs.eu</u>

Pinger trials in 2019 were made in Black Sea Harbour porpoise (*Phocoena phocoena relicta*) bycatch mitigation in the Bulgarian waters of the Black Sea project funded by **New England Aquarium, Boston, USA**

Pinger trials in 2020 and 2021 were made in Monitoring and mitigation of cetacean bycatch in Bulgarian waters project funded by **ACCOBAMS Supplementary Conservation Fund, MoU 14/2019**

Special thanks to all fishermen that joined the study and Green Balkans NGO experts and volunteers - G. Meshkova, G. Gradev, P. Hristova, D. Rusev, N. Davidkov, H. Klisurova – that collected onboard data!

Special thanks to prof. Boris Culik for providing PALs and advice on analysis of results!

THANKS FOR YOUR ATTENTION!

DIMITAR POPOV PROJECT MANAGER GREEN BALKANS NGO EMAIL: <u>dpopov@greenbalkans.org</u> https://greenbalkans.org/delfini/en/

