Agenda Item 2

Review of New Information on Threats and Other Issues Relevant to Small Cetaceans

Document NR.9

2021 Annual National Report: France

Action Requested

- Take note
- Comment

Submitted by

France
As outlined in ASCOBANS Resolution 8.1 (Rev.MOP9) National Reporting, this form will cover the year 2021 (Year 2), and the following topics included in the Annex to the Resolution, in addition to the standard Sections I (General Information) and VII (Other Matters):

- Bycatch (Section II A1)
- Resource Depletion (Section II A2)
- Marine Debris (Section II C9)
- Surveys and Research (Section III A: Biological Information, B: Monitoring Programmes, C: Other Research)
- Use of Strandings Records (Section IV)

The national reports submitted will inform discussions at the 27th Meeting of the ASCOBANS Advisory Committee (28-30 September 2022).

- All questions apply to the reporting period of 1 January - 31 December 2021.
- Region in the tables refers to the sub-regions as defined by the HELCOM and OSPAR, and Areas refers to the sub-areas as defined by ICES. An overview and maps of these can be found in Annex A. Species can be chosen from the drop-down list provided, based on ASCOBANS species list, see Annex B.
- Throughout the form, please include relevant web links and add rows where applicable.
- The deadline for the submission of National Reports is 31 March 2022.

Where possible, National Coordinators should consult with, or delegate to, experts for particular topics so as to ease the reporting burden. The Secretariat has provided a list of potential country contacts as a starting point. Once the baseline information is in place, it should become easier to update in the future.

For any questions, please do not hesitate to contact the Secretariat: ascobans.secretariat@ascobans.org.
High-level Summary of Key Messages

In your country, for 2021 (Year 2), what does this report reveal about:

1. The most successful aspects of implementation of the Agreement? (list up to five items)

2. The greatest challenges in implementing the Agreement? (list up to five items)
 - Small cetaceans bycatch in the Bay of Biscay

3. The main priorities for future implementation of the Agreement? (list up to five items)
 - Same as the greatest challenge

Section I: General Information

A. Country Information

1. Name of Party / Non-Party Range State:

2. Details of the Report Compiler
 - Name: Florian Expert
 - Function: Chargé de mission espèces marines protégées, focal point ASCOBANS
 - Organization: Ministère de la transition écologique
 - Postal Address: tour Séquoia 92055 la Défense cedex
 - Telephone: 0140813209
 - Email: florian.expert@developpement-durable.gouv.fr
 - Does the Report Compiler act as ASCOBANS National Coordinator (i.e. focal point)?
 ☒ Yes

3. Details of contributor(s)
 - Topic(s) contributed to: Fisheries related threats, Marine debris, Abundance estimates, New information on life history parameters, Overview of current monitoring and survey schemes, Stranding networks and strandings
 - Name: Florence CAURANT, Hélène PELTIER, Vincent RIDOUX, Olivier VAN CANNEYT
 - Function:
 - Organization: Observatoire Pelagis; La Rochelle University/CNRS
 - Postal Address: 5 allées de l’océan, 17000 La Rochelle, France
 - Telephone: + 33546507669
 - Email: fcaurant@univ-lr.fr

Copy box if needed.
Section II: Habitat Conservation and Management (threats and pressures on cetaceans)

A. Fisheries-related Threats

1. Bycatch

AIM: to illustrate progress on understanding, monitoring and mitigating bycatch of small cetaceans.

Relevant Resolutions: 9.2, 8.5 (Rev.MOP9), 8.4 (Rev.MOP9), 8.3, 7.3, 7.1, 6.1, 5.8, 5.7, 5.5, 3.3

Bycatch, the entanglement of an animal in fishing gear, is identified as a major cause of mortality in small cetaceans. Every effort should be made to reduce bycatch towards zero as quickly as possible. Parties to ASCOBANS have agreed on a number of resolutions that highlight the importance of mitigating bycatch of small cetaceans in the Agreement Area, as available data indicates that levels of bycatch pose a considerable threat to their conservation status. Parties have agreed that modifications of fishing gear and relevant practices shall be applied in order to reduce negative impacts where data indicates unacceptable interaction. The Agreement Area requires improved monitoring, collation of data, and consideration of appropriate mitigation measures, while also taking into account similar work in other areas.

To better understand the extent of the impact of bycatch on small cetaceans, monitoring and mitigation measures in place, and ongoing work in the Agreement Area, countries are requested to provide relevant information.

Note: This section includes bycatch in recreational fisheries.

Questions:

1.1. How is bycatch assessed/monitored in your country?

<table>
<thead>
<tr>
<th>Method</th>
<th>Used</th>
<th>Bay of Biscay: 1 December to 30 April: 5% gillnets and pelagic trawlers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated observer schemes</td>
<td>☒</td>
<td>Bay of Biscay: 1 December to 30 April: 5% gillnets and pelagic trawlers</td>
</tr>
<tr>
<td>Fisheries observes</td>
<td>☒</td>
<td>All the year: 1% gillnets and trawlers,</td>
</tr>
<tr>
<td>Remote Electronic Monitoring</td>
<td>☒</td>
<td>Experimental programm in Bay of Biscay: 5% gillnets (20 vessels in 2022)</td>
</tr>
<tr>
<td>Self-reporting by fishermen</td>
<td>☒</td>
<td>systematic bycatch reporting by fishermen became mandatory in 2019</td>
</tr>
<tr>
<td>Pathological investigation</td>
<td>☒</td>
<td>Cf. section 3. Part A 1)</td>
</tr>
<tr>
<td>Assessment at stranding site</td>
<td>☒</td>
<td>XX</td>
</tr>
</tbody>
</table>

Comments:

National byatch estimates are provided annually by reverse drift modelling methodology applied on common dolphin and harbour porpoise strandings (following Pellier et al., 2016).

Fishery observation data are transmitted to WGBYC (ICES group) for bycatch estimates at ecoregion level every year.

A feasibility study of remote electronic monitoring on netters was carried out in 2021 (5 vessels) and extended to 15 new vessels in 2022. In the future, data should be sent to WGBYC for annual bycatch estimates.

The bycatch reporting by fishermen became mandatory in 2019 but is poorly implemented.
1.2. Which species of small cetaceans were recorded as bycatch by commercial fishing in the reporting period?
Overview of bycaught small cetaceans per region. Provide information where available.

- Fishermen declarations: cf attached excel file

- strandings which after examination, are believed to be due to bycatch

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of bycaught animals observed</th>
<th>Year (incl. season if available)</th>
<th>Gear type</th>
<th>Area</th>
<th>Overall sampling effort</th>
<th>Monitoring method used</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>90</td>
<td>2021</td>
<td>unknown</td>
<td>27.8.b</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>14</td>
<td>2021</td>
<td>unknown</td>
<td>27.8.b</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>SD Striped dolphin</td>
<td>4</td>
<td>2021</td>
<td>unknown</td>
<td>27.8.b</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>BD Bottlenose dolphin</td>
<td>6</td>
<td>2021</td>
<td>unknown</td>
<td>27.8.b</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>437</td>
<td>2021</td>
<td>unknown</td>
<td>27.8.a</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>10</td>
<td>2021</td>
<td>unknown</td>
<td>27.8.a</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>SD Striped dolphin</td>
<td>3</td>
<td>2021</td>
<td>unknown</td>
<td>27.8.a</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>BD Bottlenose dolphin</td>
<td>5</td>
<td>2021</td>
<td>unknown</td>
<td>27.8.a</td>
<td></td>
<td>Strandings</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>66</td>
<td>2021</td>
<td>unknown</td>
<td>27.7.e</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>4</td>
<td>2021</td>
<td>unknown</td>
<td>27.7.e</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>SD Striped dolphin</td>
<td>1</td>
<td>2021</td>
<td>unknown</td>
<td>27.7.e</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>BD Bottlenose dolphin</td>
<td>1</td>
<td>2021</td>
<td>unknown</td>
<td>27.7.e</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>RD Risso’s dolphin</td>
<td>1</td>
<td>2021</td>
<td>unknown</td>
<td>27.7.e</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>4</td>
<td>2021</td>
<td>unknown</td>
<td>27.7.d</td>
<td></td>
<td>strandings</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>55</td>
<td>2021</td>
<td>unknown</td>
<td>27.7.d</td>
<td></td>
<td>strandings</td>
</tr>
</tbody>
</table>
1.3. Which species of small cetaceans were recorded as bycatch by recreational fishing in the reporting period?

None data

Overview of bycaught small cetaceans per region. Provide information where available.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of bycaught animals observed</th>
<th>Year (incl. season if available)</th>
<th>Gear type</th>
<th>Area</th>
<th>Overall sampling effort</th>
<th>Monitoring method used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose an item.</td>
<td>Choose an item.</td>
<td>Choose an item.</td>
<td>Choose an item.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4. Has there been any notable incidents/issues related to bycatch during the reporting period in your country?

☒ Yes. Please provide details:

Since 2016, it was observed a period of multiple stranding events typically from late January to mid-March every year of the reporting period. This year, a short period of strandings in the end of February was observed.

1.5. Are there any mitigation measures in place?

☒ Yes. Please provide details: What mitigation measures (including alternative gear) are being used and where? (Acoustic deterrent devices, seasonal closures, gear modifications etc.)

<table>
<thead>
<tr>
<th>Mitigation approach</th>
<th>Region</th>
<th>Year implemented</th>
<th>Has the mitigation measure been effective?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic deterrent devices on PTM/PTB</td>
<td>OIV Northern Bay of Biscay</td>
<td>2021</td>
<td>☒ Yes. Comments: Rapport PIC (pas de publication scientifique) : efficacity of 65% [15; 98%]</td>
</tr>
<tr>
<td>Acoustic deterrent devices on gillnets (GN)</td>
<td>Off Channel</td>
<td>2021</td>
<td>☒ No ☒ Yes. Comments: European regulation</td>
</tr>
<tr>
<td>Choose an item.</td>
<td>Choose an item.</td>
<td>Choose an item.</td>
<td>☒ No ☒ Yes. Comments:</td>
</tr>
</tbody>
</table>

1.6. Have there been changes in fishing effort (for fisheries known to have an impact) in the reporting period?

☒ Yes. Please provide details:

At the spatial and temporal resolution of mandatory data calls (ICES), it seems that no changes in fishing effort were detected since 2013. Please note that changes in fishing practices, in size of fishing gears or in fishing effort at smaller scale couldn’t be detected through these data.

1.7. Relevant new research/work/collaboration on bycatch in your country.

Starting in 2019, pelagic trawls were allowed to be equipped with dolphin deterrent devices (pinger). The Ministerial arrêté of November 27, 2020 made it mandatory to equip pelagic and demersal trawls in pairs in the Bay of Biscay with acoustic deterrent devices on a year-round basis. In 2021, the control objective was 25% of the fleet concerned (21% of the fleet had already been controlled in November 2021).

LICADO: EMFF measure 39 funded project aiming at developing new pingers (directional, interactive) for PTM, exploring technical and operational measures for netters (pingers, reflectors);

Projet DOLPHINFREE, measure 39 funded project aims to develop a pinger that emits a comprehensible and interpretable signal to signal the presence of the net and the associated mortality risk. And in a second step, it aims to develop an energy generator to increase the autonomy of the device by including a passive listening module (developed by the LICADO...
project) which allows to identify the presence of dolphins and to trigger the emission of an acoustic signal (thus limiting the noise pollution in the environment). Tests of the devices on gillnets will take place in 2022.

Project PIFIL (october 2021 to September 2022), following LICADO project: aims to develop a pinger that can be attached to the ship's hull and triggered during setting process. 20 gillnetters have been equipped.

Project CetAMBICion: The Cetambicion project, launched in March 2021, is a project bringing together the three countries of the Atlantic coast on cetaceans bycatch in the Bay of Biscay. This project follows a call for projects within the framework of the European Commission’s Marine Strategy Framework Directive (MSFD). The project aims not only to improve knowledge but also to propose measures, including new joint recommendations, along five lines:

- Identify technical solutions to reduce by-catches;
- To test pingers on trawls and gillnets;
- Experiment with an application to identify dolphins and by-catch;
- Study move-on-roll solutions;
- To come up with a proposal for a joint recommendation to significantly reduce cetacean by-catches in the Bay of Biscay.

1.8. Is the perceived level of pressure from bycatch in your country increasing, decreasing, staying the same or unknown?

Please provide the nature of the evidence and describe per species (Annex B) where applicable.

<table>
<thead>
<tr>
<th>Species</th>
<th>Increasing</th>
<th>Decreasing</th>
<th>Staying the same</th>
<th>Unknown</th>
<th>Nature of the evidence (e.g. strandings, observer schemes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD Short-beaked</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>strandings</td>
</tr>
<tr>
<td>Common dolphin</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>strandings</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>strandings</td>
</tr>
<tr>
<td>BD Bottlenose dolphin</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>strandings</td>
</tr>
<tr>
<td>SD Striped dolphin</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>strandings</td>
</tr>
</tbody>
</table>

☐ Not applicable. Comments:

A. Fisheries-related Threats

2. Resource Depletion

AIM: to determine areas where, and to what extent, depletion of fish stocks have occurred during the reporting period. In addition, identify ongoing mitigation efforts regarding detrimental implications for small cetaceans.

Relevant Resolutions: 8.9, 8.3, 7.1, 6.1

Depletion in fish stocks due to overfishing and other factors generates pressure on the favourable conservation status of small cetaceans (through possible food shortage). More integrated management and reductions in fishing effort (also prompted by concern about fish stock depletion or other ecosystem considerations) have been encouraged, especially in areas of known risk. Further research, effective fishery regulations and innovation within certain fishing methods are considered to be helpful steps towards mitigating this pressure.

Parties to ASCOBANS have agreed on a number of resolutions that (1) determine the impact of the depletion of fish stocks on small cetaceans, (2) encourage fishing effort reductions and (3) review new information on these depletions to make recommendations. Resource depletion in the Agreement Area requires improved monitoring, collation of data, and consideration of appropriate mitigation measures, while also taking into account similar work in other areas.
It is of particular interest to ASCOBANS to understand the extent of prey depletions, any related ongoing work, monitoring and mitigation measures in the Agreement Area. Countries are requested to provide relevant information.

Questions:

2.1. Based on the latest stock assessments, are there any notable depletions of fish species which would be a concern for small cetaceans?

Please provide details.

A research project has been launched in 2022 (DELMOGES) to answer the link between the presence of dolphins, incidental catches and small pelagics.

2.2. Where are these depletions in national waters occurring?

Sub-areas/regions as defined by ICES/OSPAR & HELCOM.

<table>
<thead>
<tr>
<th>Area</th>
<th>Region</th>
</tr>
</thead>
</table>

2.3. What measures are being taken to manage pressures on depleted fish stocks, including relevant regulations/guidelines (current / planned / year of implementation)?

<table>
<thead>
<tr>
<th>Measure</th>
<th>Timeframe information</th>
<th>Relevant driver</th>
</tr>
</thead>
</table>

2.4. Is there any evidence within your country’s national waters that resource depletion may be impacting small cetaceans (e.g. evidence of starvation)?

☒ No.
☐ Yes.

Please provide details.

2.5. Are there any national efforts to evaluate cetacean body condition at sea (e.g. surveys)?

☒ No.
☐ Yes.

Please provide details.

2.6. Relevant new research/work/collaboration on resource depletion in your country.

In 2022, launch of research programme DELMOGES

2.7. Is the perceived level of pressure from resource depletion in your country increasing, decreasing, staying the same or unknown?

Please provide the nature of the evidence and describe per species (Annex B) where applicable.

<table>
<thead>
<tr>
<th>Species</th>
<th>Increasing</th>
<th>Decreasing</th>
<th>Staying the same</th>
<th>Unknown</th>
<th>Nature of the evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose an item.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>Choose an item.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>Choose an item.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
</tbody>
</table>

☒ Not applicable. Comments:

C. Habitat Change and Degradation (incl. potential physical impacts)
9. Marine Debris (ingestion and entanglement)

AIM: to illustrate progress, during the reporting period, on understanding, monitoring and mitigating impacts of marine debris on small cetaceans.
Relevant Resolutions: 8.8, 8.3, 6.1

Marine debris, such as macroplastics and discarded fishing gear, poses a threat to small cetaceans due to the potential for these materials to be ingested or to cause entanglement. Commercial fishing operations, recreational fishing and cargo shipping are notable sources of this material, of which the majority is plastic and ghost nets. However, it is assumed that most of the marine litter worldwide comes from land, although this differs per region. Even small amounts of macroplastics that have been ingested may present serious effects on small cetaceans, such as detrimental influence on the gastrointestinal tract or leaching pollutants into the body, potentially leading to mortality or reduced body condition. Entanglement is well-established as a threat to small cetaceans as plastic debris continues to accumulate in aquatic environments, and may cause physical injuries, reduced survival or drowning.

To better understand the impact of marine debris on small cetaceans and measures in place to mitigate these effects, countries are requested to provide relevant information.

Note: Includes macroplastics and discarded fishing gear. Microplastics are covered under Section C 10 Pollution and Hazardous Substances.

Questions:

9.1. Does your country have monitoring in place to assess levels of marine debris?
- ☐ No. Go to Question 9.3.
- ☒ Yes. Provide information in the table below:

<table>
<thead>
<tr>
<th>Source of Monitoring</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSFD/OSPAR beach surveys: CEDRE, Brest; Sea floor litter: trawl survey, fisheries survey (International Bottom Trawl Surveys, IBTS) by R/V Thalassa; Ifremer; Microplastics at surface: regular monitoring (MSFD related), though IBTS cruises : IFREMER visual surveys of floating marine litter from vessel and aircraft megafauna surveys conducted by Pelagis (SAMM-2; SPEE; Megascope; ...); Litter ingested by sea turtles (OSPAR Common Indicator and MSFD D10C3)+ sea turtle entanglement in debris (MSFD D10C4): standard monitoring of quantities and effects on live and dead specimens by stranding networks and rescue centers</td>
<td></td>
</tr>
</tbody>
</table>

9.2. Are these data publicly available?
- ☐ No.
- ☒ Yes. Please provide web link:

 On request to data collector/providers
 DALI Ifremer : https://www.ifremer.fr/quadrige2_support/DALI

9.3. What species of small cetaceans were found to have been impacted by marine debris?

<table>
<thead>
<tr>
<th>Species</th>
<th># of impacted individuals</th>
<th>Year</th>
<th>Region</th>
<th>Description of the impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBW Cuvier's Beaked Whale</td>
<td>1</td>
<td>09/05/2021</td>
<td>OIV Northern Bay of Biscay</td>
<td>16 kg of plastic debris in stomach</td>
</tr>
<tr>
<td>Choose an item.</td>
<td>dd/mm/yy</td>
<td>Choose an item.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose an item.</td>
<td>dd/mm/yy</td>
<td>Choose an item.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.4. Are there any mitigation measures in place?
- ☐ No.
- ☒ Yes. Provide information in the table below.

Mitigation measures might include changes in gear to prevent loss, entanglement response, adoption of measures to reduce land-based/boat-based sources of marine debris, etc.

<table>
<thead>
<tr>
<th>Measure:</th>
</tr>
</thead>
</table>
9.5. How is marine debris managed? (incl. relevant regulations / guidelines and the year of implementation, current and planned)

France has adopted several laws that ban a list of single use plastics items:
- The legislation for Reclaiming biodiversity, nature and landscapes law (2016) has set up a ban for microbeads in cosmetics for 2018 and a ban for cotton-buds in 2020;
- The legislation for trade relations balance in the agricultural sector and healthy and sustainable diet (EGAlim, 2018) has planned a ban on plastic stirrers and straws in 2020, and a ban of food containers in collective catering for 2025;
- The legislation against waste and for a circular economy (2020) has defined a goal of zero single-use plastic by 2040, with targets for deposits, recycling and reuse.

MSFD: the 1st cycle of the national plan of actions for the MSFD has been implemented since 2016, with various measures to prevent marine litter:
- Mobilizing of extended producer responsibility chains;
- Making an inventory of existing actions and experiences regarding river basins (study from the CEREMA);
- Evaluating the river inputs;
- Identifying new fishing gears that intend to prevent impacts in the marine environment;
- Identifying areas of accumulation of marine litter;
- Identifying relevant methods and good practices to collect macro-waste that can be immersed during dredging operations.

Roadmap “zero plastic waste at sea”: the roadmap, defined in 2019, has planned 35 actions to prevent marine litter, structured in 4 main lines of actions:
- The prevention of land-based plastic pollution: it includes a recommendation on plastic pellet loss, studies on plastic alternatives, actions to absorb historical dumpsites and diffusing good practices to municipalities;
- The fight against litter in watercourses, sewage, storm water: the roadmap has planned collection, quantification and mapping of the litter at this level;
- The fight against plastic waste on the coast and at sea: actions to improve waste reception and management in ports, to study areas of litter accumulation and to raise awareness of fishermen will be implemented;
- Awareness-raising, information and education of the public through the associative network, a collaborative platform and a national charter.

The Ministry is developing the national charter “Beaches without plastic waste”. Coastal municipalities are invited to sign this charter in order to implement 15 concrete actions of awareness raising, clean-up and prevention of marine litter on their beaches.

9.6. Relevant new research/work/collaboration on marine debris in your country.

List initiatives/ projects (incl. PhD, MSc); publications (reports, theses, papers in journals, books) from any study; web links to other relevant information e.g. link to OSPAR reports

Le PNMI va être impliqué dans le projet Preventing Plastic Pollution (PPP). Ce projet INTERREG MANCHE France -Angleterre porte sur les pollutions plastiques en développant des approches tournées vers les bassins versants ruraux et côtiers.
French organisations are involved in 2 Interreg project dealing with marine litter in the framework of MSFD and OSPAR RAP: Clean Atlantic focused on macrolitter and OceanWise focused on expanded / extruded polystyrene EPS/XPS and alternatives (Cedre, University of Southern Brittany Lorient et SeaBird). These organisations are particularly in charge of the following actions:

i) in CleanAtlantic http://www.cleanatlantic.eu : Cedre [beachlitter characterisation along the Atlantic Area coastline and mapping of beach litter accumulations (hot spots); behaviour of single-use items (cigarette butts and cotton buds) and ecotoxicological impact on marine species (cigarette buds); inventory of initiatives, measures and actions implemented for preventing and reducing marine litter; identification of beach litter clean-up pratices; Ifremer (improvement of data base management; candidate indicator for flora entanglement); CRPM (inventory of research projects on marine litter; links with European public policies)

ii) in OceanWise http://www.oceanwise-project.eu/ : Cedre (EPS/XPS beachlitter characterisation along the Atlantic Area coastline; ecotoxicological impact of EPS/XPS and its alternatives on marine species); UBS and Seabird (physical properties and degradation of EPS/EPS; stakeholders and uses of EPS/XPS products; development and test of alternatives of EPS/XPS)
A national research consortium dedicated on the fate of plastic in marine environment (Groupement de recherche GdR “Polymères and Oceans” https://www.gdr-polymeresetoceans.fr/) has recently been created by the French national research center – CNRS.

9.7. Is the perceived level of pressure from marine debris in your country increasing, decreasing, staying the same or unknown?

To be done per species where applicable.

<table>
<thead>
<tr>
<th>Species</th>
<th>Increasing</th>
<th>Decreasing</th>
<th>Staying the same</th>
<th>Unknown</th>
<th>Nature of the evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose an item.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
</tbody>
</table>

☐ Not applicable. Comments:

Section III: Surveys and Research

A. Biological Information (per species)

1. Abundance estimates

AIM: To provide new information on abundance and life history parameters of small cetaceans during the reporting period.

Relevant Resolutions: 8.5 (Rev.MOP9), 8.4 (Rev.MOP9), 8.3, 7.1, 6.1, 5.7, 5.5, 4.7, 3.5, 3.3

Abundance estimates and information on life history are of critical importance for the determination of broader species attributes such as populations levels, health and overall status. These parameters can contribute towards determination of GES and provide a reference for mortality events. Abundance and life history parameters are typically assessed from monitoring programmes. Fluctuations in these parameters can provide insight into trends in populations. Information on abundance and life history parameters can inform the need for mitigation measures, and regional assessment of these parameters allows for a more spatially targeted and concentrated response to support national assessments.

In the ASCOBANS Area, small cetacean abundance and life history should be monitored in response to a number of ASCOBANS resolutions. Continued monitoring of these parameters is essential to understanding current status and trends.

Questions:

1.1. Did your country conduct national dedicated surveys on abundance and distribution during the reporting period?

☐ No.
☒ Yes. Provide information in the table below.

Add rows if necessary. Attach maps separately, clearly marking which survey they apply to. **Note:** Information relevant to SCANS-IV is to be provided in Question 1.2.

<table>
<thead>
<tr>
<th>Location</th>
<th>Project</th>
<th>Time period</th>
<th>Method</th>
<th>Species</th>
<th>Animal abundance (including confidence limits or CV)</th>
<th>Link to project/report/publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay of Biscay</td>
<td>SAMM-2</td>
<td>Winter 2021</td>
<td>line transect</td>
<td>HP Harbour porpoise</td>
<td>3416 (2187-5151)</td>
<td></td>
</tr>
<tr>
<td>Bay of Biscay</td>
<td>SAMM-2</td>
<td>Winter 2021</td>
<td>line transect</td>
<td>BD Bottlenose dolphin</td>
<td>8532 (3263-22555)</td>
<td></td>
</tr>
<tr>
<td>Bay of Biscay</td>
<td>SAMM-2</td>
<td>Winter 2021</td>
<td>line transect</td>
<td>CD Short-beaked Common dolphin</td>
<td>186722 (134089-260684)</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td>SAMM-2</td>
<td>Winter 2021</td>
<td>line transect</td>
<td>HP Harbour porpoise</td>
<td>12685 (9671-16339)</td>
<td></td>
</tr>
</tbody>
</table>
Comment: figures for Common dolphins apply for the complex Common/Striped dolphin. 100% CD in the Channel; 96% CD in BoB shelf; 85% CD in oceanic BoB.

Relevant information on distribution during the reporting period:

Include species, method, time period, weblinks, and other relevant information

1.2. Other relevant new research/work/collaboration on abundance estimates in regard to small cetaceans in your country during the reporting period.

The Pelagis observatory conducted aerial observations to estimate the abundance and the distribution area of the common dolphin population during the winter period (SAMM 2 campaign)

The observations took place from 11/01 to 25/03/2021 covering all the transects on the map. It is in total the realization of 208 hours of flight in 70 days on 25 000 km. 8,170 individuals were observed corresponding to 11 different species of marine mammals. 33 dead animals drifting were also counted during the overflights.

Between now and the end of the year, the flight data collected will be analyzed: first, to evaluate the distribution area, then to estimate the abundance of the populations. The results will be compared to the 2011-2012 overflight campaign (Samm I), allowing to assess the evolution of the common dolphin population in the Bay of Biscay.

STORMM digital support for visual observation, especially for distinguishing between common dolphins and striped dolphins.

SAMM2 final report has been published: https://www.observatoire-pelagis.cnrs.fr/samm-ii-le-rapport/

1.3. Is the abundance of species in your country increasing, decreasing, staying the same or unknown? Please provide the nature of the evidence and describe per species (Annex B) where applicable.

<table>
<thead>
<tr>
<th>Species</th>
<th>Increasing</th>
<th>Decreasing</th>
<th>Staying the same</th>
<th>Unknown</th>
<th>Nature of the evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>SAMM-1&2 survey</td>
</tr>
<tr>
<td>BD Bottlenose dolphin</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>SAMM-1&2 survey</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>SAMM-1&2 survey</td>
</tr>
</tbody>
</table>

☐ Not applicable. Comments: for HP, point estimates increase but broad overlap of CI.

A. Biological Information (per species)

2. New information on life history parameters

2.1. Is there new information on the following life history parameters in the reporting period?

For each life history parameter, please identify the species and provide web links and details where applicable.

<table>
<thead>
<tr>
<th>Age of sexual and physical maturity</th>
<th>☐ No ☒ Yes Please describe: ASM for females 7.3 year; new indicator of puberty; (Etienne Rouby’s PhD thesis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species: CD Short-beaked Common dolphin</td>
<td></td>
</tr>
</tbody>
</table>

Species: CD Short-beaked Common dolphin
2021 ASCOBANS National Report

Inter-birth intervals
- **Selection:** Yes
- **Description:** Please describe: 2.5 to 3 years (Etienne Rouby’s PhD thesis)
- **Species:** CD Short-beaked Common dolphin

Calf and adult mortality rates
- **Selection:** Yes
- **Description:** Please describe: age-specific mortality rates (Etienne Rouby’s PhD thesis)
- **Species:** CD Short-beaked Common dolphin

Potential reproductive span/capacity
- **Selection:** No
- **Description:** Please describe:
- **Species:**

Longevity
- **Selection:** No
- **Description:** Please describe:
- **Species:**

Diet
- **Selection:** Yes
- **Description:** Please describe: in progress
- **Species:** CD Short-beaked Common dolphin

Age and sex structure
- **Selection:** Yes
- **Description:** Please describe: age distribution and sex ratio (Etienne Rouby’s PhD thesis)
- **Species:** CD Short-beaked Common dolphin

Other relevant factors
- **Selection:** Yes
- **Description:** Please describe: temporal variation in vital rates and effect of covariates (Etienne Rouby’s PhD thesis)
- **Species:** CD Short-beaked Common dolphin

B. Monitoring Programmes

3. **Overview of current monitoring and survey schemes –**

Aim: to provide information on the progress of monitoring programmes, relevant methodologies and aims thereof, and status of small cetaceans during the reporting period.

Relevant Resolutions: 8.11 (Rev.MOP9), 8.9, 8.8, 8.5 (Rev.MOP9), 8.4 (Rev.MOP9), 8.3, 7.3, 7.1, 6.1, 5.7

Monitoring programmes provide important data on biological and environmental attributes, such as population status, abundance and spatial-temporal distribution. They create opportunities for new research and development, including potential improvements to methodology for monitoring in terms of accuracy, practicality and cost efficiency.

In the ASCOBANS Area, application of coherent monitoring programmes focused on small cetaceans, which collect and provide objective, robust and comparable data, is a key component in understanding and improving the conservation status of small cetaceans through appropriate management. Parties have agreed to design, implement and support relevant monitoring programmes through a number of resolutions. Such efforts are also supported by legislation from a number of bodies which identify monitoring as a requirement in management systems. Additionally, Parties have been encouraged to coordinate their monitoring programmes, which promotes international cooperation and synergies. Parties have also been encouraged to review such monitoring programmes and propose improvements for the betterment of conservation efforts.

It is the interest of ASCOBANS to understand the current monitoring programmes utilised, their outputs, and future activities in the Agreement Area. Countries are requested to provide information relevant to their activities as well as potential improvements to such programmes and efforts.

Questions:

3.1. Did your country have national monitoring programmes that enabled assessment of the Conservation Status of small cetaceans in your waters (i.e. provides abundance estimates and/or life history parameters and information on pressures) during the reporting period?
- **Selection:** Yes.
- **Description:** Please provide an overview in the table below.
- **Add rows if necessary.**
3.2. Please provide the relevant information regarding aerial surveying activities.

The Pelagis observatory conducted aerial observations to estimate the abundance and the distribution area of the common dolphin population during the winter period. The observations took place from 11/01 to 25/03/2021 covering all the transects on the map. It is in total the realization of 208 hours of flight in 70 days on 25 000 km. 8,170 individuals were observed corresponding to 11 different species of marine mammals. 33 dead animals drifting were also counted during the overflights.

Between now and the end of the year, the flight data collected will be analyzed: first, to evaluate the distribution area, then to estimate the abundance of the populations. The results will be compared to the 2011-2012 overflight campaign (Samm I), allowing to assess the evolution of the common dolphin population in the Bay of Biscay.

3.3. Please provide the relevant information regarding Passive Acoustic Monitoring (PAM).

Provide the location of moored instruments, timeframe of the survey, the relevant species, and the make and model of instruments used.

3.4. Are any of these programmes carried out in collaboration with other countries?

☒ No.
☐ Yes. Provide information below.

Please provide the collaborators and links per programme.

3.5. Please provide details on any planned activities relevant to monitoring programmes.

SCANS-IV 2022; CAPECET movement of CD within BoB in the context of bycatch; survey within MPA in BoB and Channel; Megascope: routine monitoring from fish survey cruises Pelgas, EHVOE, CGFS, IBTS by Ifremer.

3.6. Relevant outputs/findings from monitoring programmes to note.

Per species, please identify the relevant outputs. Provide web links if available.
Section IV: Use of Strandings Records

A. Stranding Network and Strandings

AIM: to provide information on stranding events and demonstrate progress of stranding networks in understanding, monitoring and mitigating strandings of small cetaceans.

Relevant Resolutions: 8.10 (Rev.MOP9), 8.7, 8.4 (Rev.MOP9), 8.3, 7.4, 7.3, 7.1, 6.1, 5.7

Stranding of cetaceans is an ever-present occurrence and analysis through necropsy and sampling can provide indications of reason for injury and death. Stranding numbers also provide information on population status, abundance and distribution. Effective response to strandings contributes to the maintenance of favourable conservation status of small cetaceans and also has implications for animal welfare. Comprehensive stranding networks are a critical asset in managing small cetacean strandings and have resulted in large numbers of animals rescued and returned to sea. These networks also have the capacity to guide the public on animal welfare, human health and safety considerations during stranding events.

In the effort to mitigate the anthropogenic causes of these occurrences, Parties have agreed to measures through a number of resolutions. Continued monitoring of stranding causation and further developing guidance for best practices in stranding response and necropsies was identified by Parties as important tasks to pursue, as was setting up stranding response networks. This information is to align with appropriate sampling practices and countries should ensure that the data is available for researchers. Additionally, development and support of international strandings databases and regular reporting is conducted through relevant research institutes and stranding schemes. ASCOBANS Secretariat encourages the ongoing funding and support of engagement with organizations for further development of guidelines, best practices and maintaining dataflow for capacity building across stranding networks.

To better understand the extent to which stranding events occur and how these events are managed, it is the interest of ASCOBANS for countries to provide the relevant information on these occurrences within the Agreement Area, procedures undertaken in response to stranding events, necropsies and information on stranding networks.

Questions:

1.1. Is there a national stranding network in place?
- ☐ No. Go to Question 1.4.
- ☒ Yes.
 Please provide details:

 The **French** stranding network is co-ordinated by the Joint Service Unit *ObservatoirePelagis*, UAR 3462 University of La Rochelle/CNRS, dedicated to monitoring marine mammal and seabird populations and funded by the Ministry in charge of the environment and the French Agency for Biodiversity. It is constituted of around 400 trained volunteers distributed along the French coast who collect data according to a standardized observation and dissection protocol.

1.2. Does the national stranding network cover the whole, or part of the reporting country’s coastline?
- ☒ Whole coastline.
- ☐ Part of the coastline.
 Please provide details:
1.3. Are necropsies carried out to determine cause of death?

☐ No.
☒ Yes.

Please provide details:

The presence of epidermis and intact viscera in very fresh to slightly decomposed carcasses allowed the observers to carry out the full sampling protocol and therefore establish the cause of death, as defined in Van Canneyt et al. (2015), inspired by Geraci and Lounsbury (2005)). Necropsies are carried out on 5 to 10% of individuals found stranded.

1.4. Is there a database of strandings?

☐ No. Go to Question 1.6.
☒ Yes. Continue to Question 1.5.

1.5. Is the data available online or downloadable on request?

☐ No.
☒ Yes.

Please provide details:

Elementary data (species, date, location of stranding) are freely available online (http://seamap.env.duke.edu/dataset/1406).

More detailed data are send on request, following a data sharing agreement (pelagis@univ-lr.fr).

1.6. Provide details for any new institution(s) responsible for a stranding database, responding to live-strandings, collection of carcasses, and for conducting necropsies.

<table>
<thead>
<tr>
<th>Responsible Institution</th>
<th>Responsibility</th>
<th>Phone number</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Service Unit</td>
<td>☒ Responding to live-strandings</td>
<td>☒ Collection of carcasses</td>
<td>☒ Necropsies</td>
<td>☒ Stranding database</td>
</tr>
<tr>
<td>Observatoire Pelagis,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAR 3462 La Rochelle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University / CNRS</td>
<td></td>
<td>+33 (0) 5 46 44 99 10</td>
<td>pelagis@univ-lr.fr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.7. Were cases photographed, measured or sampled even if not collected for necropsy during the reporting period?

☐ No.
☒ Yes.

Please provide details:

Photographs are part of the stranding protocol.

1.8. Were there recorded stranding events in your country during the reporting period?

☐ No.
☒ Yes.

How many strandings occurred? (Specify live and dead) _1417 small cetaceans (of which 113 live stranded) ____________________________

Please also provide more details in the table below.

<table>
<thead>
<tr>
<th>Species</th>
<th>Region</th>
<th>Total animals stranded</th>
<th>Number of dead animals</th>
<th>Number of animals stranding alive</th>
<th>Response to live stranding (describe # of successful cases and methods used)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>OIV Northern</td>
<td>719</td>
<td>678</td>
<td>41</td>
<td>5 found stranded dead after being seen stranded alive</td>
</tr>
<tr>
<td></td>
<td>Bay of Biscay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFPW Long-finned pilot whale</td>
<td>OIV Northern</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.9. Were any necropsies conducted during the reporting period?
☐ No.
☒ Yes.

Please provide information below:

On 1417 small cetacean strandings, 61 animals were necropsied (Jauniaux et al, 2019. Marine mammals stranding: guidelines for post-mortem investigations of cetaceans & pinnipeds’, in. 13rd Cetacean necropsy workshop, Liège. Available at: https://upcommons.upc.edu/handle/2117/335529)

33 common dolphins were necropsied: 23 bycatch; 3 with pathological evidences; 1 undetermined and 6 death due to stranding alive

13 harbour porpoises: 7 bycatch; 3 with pathological evidences; 2 undetermined; 1 traumatic cause (asphyxia after ingestion of a too large prey)

10 Bottlenose dolphin: 1 bycatch; 2 pathological evidence; 7 death due to stranding alive

3 Cuvier's beaked whale: 2 with pathological evidences; 1 traumatic cause due to gastric obstruction by macroplastics

1 pilot whale: pathological cause

1 striped dolphin: pathological case

On 1417 individuals, 1175 have been examined by a member of the network. The code of decomposition allowed an external examination on 36% of these animals. Among them, 291 common dolphins were examined with 250 showing bycatch evidences (86%); 91 harbour porpoises were examined with 49 showing bycatch evidences (54%); 22 bottlenose dolphin were examined with 5 showing bycatch evidences (23%); 10 striped dolphin were examined with 1 showing bycatch evidences (10%).

Per necropsy, please provide: the protocol used or dissection / methodologies / collection of samples etc., number of carcasses necropsied, what causes of death sere identified (add percentage if available), and any additional comments.
1.10. Other relevant new research/work/collaboration on strandings and stranding networks in your country.

List initiatives/ projects (incl. PhD, MSc); publications (reports, theses, papers in journals, books) from any study; web links to other relevant information)

Four sessions of necropsied (with telenecropsies organized by Etienne Levy from onehealth photography) were organized including veterinarians of the network, under the expertise of Thierry Jauniaux (Faculty of veterinary medicine, Liège, Belgium) and Sophie Labrut (LABOCEA, Ploufragan, France).

Section VII: Other Matters

A. Other information or comments important for the Agreement: \(^1\)

B. Difficulties in implementing the Agreement:

C. Burning issues:

\(^1\) Opportunity to include other information relevant to the topics covered in this form but which are missing.
Annex A: Overview of the sub-regions as defined by OSPAR and HELCOM, and areas as defined by ICES.

Drop-down menu sub-regions OSPAR and HELCOM
Choose an item.

<table>
<thead>
<tr>
<th>OSPAR Region I Arctic Waters</th>
<th>OSPAR Region II Greater North Sea</th>
<th>OSPAR Region III Celtic Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Norwegian Sea</td>
<td>□ Dogger Bank</td>
<td>□ Celtic Sea</td>
</tr>
<tr>
<td>□ Northern Sea</td>
<td>□ Southern North Sea</td>
<td>□ Irish Sea</td>
</tr>
<tr>
<td>□ Channel</td>
<td>□ Northern North Sea</td>
<td>□ Irish & Scottish W. Coast</td>
</tr>
<tr>
<td>□ Norwegian Trench</td>
<td>□ Channel</td>
<td></td>
</tr>
</tbody>
</table>

OSPAR Region IV Bay of Biscay and Iberian Coast

<table>
<thead>
<tr>
<th>OSPAR Region V Wider Atlantic</th>
<th>HELCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ N. Bay of Biscay</td>
<td>□ Bothnian Bay</td>
</tr>
<tr>
<td>□ Iberian Sea</td>
<td>□ Bothnian Sea</td>
</tr>
<tr>
<td>□ Gulf of Cadiz</td>
<td>□ Archipelago Sea</td>
</tr>
<tr>
<td></td>
<td>□ Åland Sea</td>
</tr>
</tbody>
</table>

HELCOM cont.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Gulf of Finland</td>
<td>□ Gulf of Finland</td>
</tr>
<tr>
<td>□ Northern Baltic Proper</td>
<td>□ Northern Baltic Proper</td>
</tr>
<tr>
<td>□ Western Gotland Basin</td>
<td>□ Western Gotland Basin</td>
</tr>
<tr>
<td>□ Eastern Gotland Basin</td>
<td>□ Eastern Gotland Basin</td>
</tr>
<tr>
<td>□ Gulf of Riga</td>
<td>□ Gulf of Riga</td>
</tr>
<tr>
<td>□ Gdansk Basin</td>
<td>□ Gdansk Basin</td>
</tr>
<tr>
<td>□ Bornholm Basin</td>
<td>□ Bornholm Basin</td>
</tr>
<tr>
<td>□ Arkona Basin</td>
<td>□ Arkona Basin</td>
</tr>
<tr>
<td>□ Kattegat</td>
<td>□ Kattegat</td>
</tr>
<tr>
<td>□ Belt Sea</td>
<td>□ Belt Sea</td>
</tr>
<tr>
<td>□ The Sound</td>
<td>□ The Sound</td>
</tr>
</tbody>
</table>

OSPAR Regions, Subregions

Region I, Barents Sea
Region I, East of Iceland
Region I, Greenland-Scotland ridge
Region I, Norwegian Sea
Region I, West of Iceland
Region II, Dogger Bank
Region II, Southern North Sea
Region II, Northern North Sea
Region II, Channel
Region II, Norwegian Trench
Region II, Skagerrak
Region III, Celtic Sea
Region III, Irish Sea
Region III, Irish and Scottish West Coast
Region IV, Gulf of Cadiz
Region IV, Iberian Sea
Region IV, Northern Bay of Biscay
Region V
A map of the Baltic Sea drainage basins (catchment area), and marine subdivisions, including basins.
1. Bothnian Bay
2. Bothnian Sea
3. Archipelago Sea
4. Åland Sea
5. Gulf of Finland
6. Northern Baltic Proper
7. Western Gotland Basin
8. Eastern Gotland Basin
9. Gulf of Riga
10. Gdansk Basin
11. Bornholm Basin
12. Arkona Basin
13. Kattegat
14. Belt Sea
15. The Sound

Drop-down menu of ICES Areas

Choose an item.

<table>
<thead>
<tr>
<th>Area</th>
<th>Area Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.3</td>
<td>Skagerrak, Kattegat, Sound, Belt and Baltic Seas</td>
</tr>
<tr>
<td>27.3.a</td>
<td>Skagerrak and Kattegat</td>
</tr>
<tr>
<td>27.3.a.20</td>
<td>Skagerrak</td>
</tr>
<tr>
<td>27.3.a.21</td>
<td>Kattegat</td>
</tr>
<tr>
<td>27.3.b.c</td>
<td>Sound and Belt Sea</td>
</tr>
<tr>
<td>27.3.c.22</td>
<td>Belt Sea</td>
</tr>
<tr>
<td>27.3.d</td>
<td>Baltic Sea</td>
</tr>
<tr>
<td>27.3.d.24</td>
<td>Baltic West of Bornholm</td>
</tr>
<tr>
<td>27.3.d.25</td>
<td>Southern Central Baltic – West</td>
</tr>
<tr>
<td>27.3.d.26</td>
<td>Southern Central Baltic – East</td>
</tr>
<tr>
<td>27.3.d.27</td>
<td>West of Gotland</td>
</tr>
<tr>
<td>27.3.d.28.1</td>
<td>Gulf of Riga</td>
</tr>
<tr>
<td>27.3.d.28.2</td>
<td>East of Gotland</td>
</tr>
<tr>
<td>27.3.d.29</td>
<td>Archipelago Sea</td>
</tr>
<tr>
<td>27.3.d.30</td>
<td>Bothnian Sea</td>
</tr>
<tr>
<td>27.3.d.31</td>
<td>Bothnian Bay</td>
</tr>
<tr>
<td>27.3.d.32</td>
<td>Bay of Finland</td>
</tr>
<tr>
<td>27.4</td>
<td>North Sea</td>
</tr>
<tr>
<td>27.4.a</td>
<td>Northern North Sea</td>
</tr>
<tr>
<td>27.4.b</td>
<td>Central North Sea</td>
</tr>
<tr>
<td>27.4.c</td>
<td>Bay of Biscay North</td>
</tr>
<tr>
<td>27.5</td>
<td>Rockall, NW Coast of Scotland and N. Ireland</td>
</tr>
<tr>
<td>27.5.a</td>
<td>NW Coast of Scotland and N. Ireland</td>
</tr>
<tr>
<td>27.5.b</td>
<td>Rockall</td>
</tr>
<tr>
<td>27.5.b.1</td>
<td>Rockall / NEAFC Reg. Area I</td>
</tr>
<tr>
<td>27.5.b.2</td>
<td>Rockall / Non-NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.6</td>
<td>Rockall, NW Coast of Scotland and N. Ireland</td>
</tr>
<tr>
<td>27.6.a</td>
<td>Wet of Bay of Biscay</td>
</tr>
<tr>
<td>27.6.b</td>
<td>Portuguese Waters</td>
</tr>
<tr>
<td>27.6.b.1</td>
<td>Portuguese Waters – East</td>
</tr>
<tr>
<td>27.6.b.2</td>
<td>Portuguese Waters – West</td>
</tr>
<tr>
<td>27.7</td>
<td>Irish Sea, West of Ireland, Porcupine Bank, Eastern and Western English Channel, Bristol Channel, Celtic Sea North and South, and Southwest of Ireland – East and West</td>
</tr>
<tr>
<td>27.7.a</td>
<td>Irish Sea</td>
</tr>
<tr>
<td>27.7.b</td>
<td>Bay of Biscay Central</td>
</tr>
<tr>
<td>27.7.b.1</td>
<td>Bay of Biscay Central – East</td>
</tr>
<tr>
<td>27.7.b.2</td>
<td>Bay of Biscay Central – West</td>
</tr>
<tr>
<td>27.7.c</td>
<td>Porcupine Bank</td>
</tr>
<tr>
<td>27.7.c.1</td>
<td>Porcupine Bank / NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.7.c.2</td>
<td>Porcupine Bank / Non-NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.7.d</td>
<td>Eastern English Channel</td>
</tr>
<tr>
<td>27.7.e</td>
<td>Western English Channel</td>
</tr>
<tr>
<td>27.7.f</td>
<td>Celtic North Sea</td>
</tr>
<tr>
<td>27.7.g</td>
<td>Celtic Sea South</td>
</tr>
<tr>
<td>27.7.h</td>
<td>SW of Ireland – East</td>
</tr>
<tr>
<td>27.7.i</td>
<td>SW of Ireland – East – Parts of the NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.7.j</td>
<td>SW of Ireland – West – Parts of the NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.7.k</td>
<td>SW of Ireland – West</td>
</tr>
<tr>
<td>27.7.k.1</td>
<td>SW of Ireland – West – Part of the NEAFC Reg. Area I</td>
</tr>
<tr>
<td>27.7.k.2</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Area I</td>
</tr>
<tr>
<td>27.7.l</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Area II</td>
</tr>
<tr>
<td>27.7.l.1</td>
<td>SW of Ireland – West – Part of the NEAFC Reg. Area II</td>
</tr>
<tr>
<td>27.7.l.2</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area II</td>
</tr>
<tr>
<td>27.7.m</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area III</td>
</tr>
<tr>
<td>27.7.n</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area IV</td>
</tr>
<tr>
<td>27.7.o</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area V</td>
</tr>
<tr>
<td>27.7.p</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area VI</td>
</tr>
<tr>
<td>27.7.q</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area VII</td>
</tr>
<tr>
<td>27.7.r</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area VIII</td>
</tr>
<tr>
<td>27.7.s</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area IX</td>
</tr>
<tr>
<td>27.7.t</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area X</td>
</tr>
<tr>
<td>27.7.u</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area XI</td>
</tr>
<tr>
<td>27.7.v</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area XII</td>
</tr>
<tr>
<td>27.7.w</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area XIII</td>
</tr>
<tr>
<td>27.7.x</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area XIV</td>
</tr>
<tr>
<td>27.7.y</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area XV</td>
</tr>
<tr>
<td>27.7.z</td>
<td>SW of Ireland – West – Part of the Non-NEAFC Reg. Area XVI</td>
</tr>
<tr>
<td>27.8</td>
<td>Bay of Biscay Outreach</td>
</tr>
<tr>
<td>27.8.a</td>
<td>Bay of Biscay Central</td>
</tr>
<tr>
<td>27.8.b</td>
<td>Bay of Biscay Central – West</td>
</tr>
<tr>
<td>27.8.c</td>
<td>Bay of Biscay Central – East</td>
</tr>
<tr>
<td>27.8.d</td>
<td>Bay of Biscay Central – South</td>
</tr>
<tr>
<td>27.8.d.1</td>
<td>Bay of Biscay Central – South – Part of the NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.8.d.2</td>
<td>Bay of Biscay Central – South – Part of the Non-NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.8.e</td>
<td>Wet of Bay of Biscay</td>
</tr>
<tr>
<td>27.8.f</td>
<td>Portuguese Waters</td>
</tr>
<tr>
<td>27.8.g</td>
<td>Portuguese Waters – East</td>
</tr>
<tr>
<td>27.8.h</td>
<td>Portuguese Waters – West</td>
</tr>
<tr>
<td>27.8.i</td>
<td>Portuguese waters – East of the NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.8.j</td>
<td>Portuguese waters – West of the NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.8.k</td>
<td>Portuguese waters – East of the Non-NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.8.l</td>
<td>Portuguese waters – West of the Non-NEAFC Reg. Area</td>
</tr>
<tr>
<td>27.8.m</td>
<td>Portuguese waters – East of the Non-NEAFC Reg. Area I</td>
</tr>
<tr>
<td>27.8.n</td>
<td>Portuguese waters – West of the Non-NEAFC Reg. Area I</td>
</tr>
<tr>
<td>27.8.o</td>
<td>Portuguese waters – East of the Non-NEAFC Reg. Area II</td>
</tr>
<tr>
<td>27.8.p</td>
<td>Portuguese waters – West of the Non-NEAFC Reg. Area II</td>
</tr>
<tr>
<td>27.8.q</td>
<td>Portuguese waters – East of the Non-NEAFC Reg. Area III</td>
</tr>
<tr>
<td>27.8.r</td>
<td>Portuguese waters – West of the Non-NEAFC Reg. Area III</td>
</tr>
<tr>
<td>27.8.s</td>
<td>Portuguese waters – East of the Non-NEAFC Reg. Area IV</td>
</tr>
<tr>
<td>27.8.t</td>
<td>Portuguese waters – West of the Non-NEAFC Reg. Area IV</td>
</tr>
<tr>
<td>27.8.u</td>
<td>Portuguese waters – East of the Non-NEAFC Reg. Area V</td>
</tr>
<tr>
<td>27.8.v</td>
<td>Portuguese waters – West of the Non-NEAFC Reg. Area V</td>
</tr>
<tr>
<td>27.8.w</td>
<td>Portuguese waters – East of the Non-NEAFC Reg. Area VI</td>
</tr>
<tr>
<td>27.8.x</td>
<td>Portuguese waters – West of the Non-NEAFC Reg. Area VI</td>
</tr>
<tr>
<td>27.8.y</td>
<td>Portuguese waters – East of the Non-NEAFC Reg. Area VII</td>
</tr>
<tr>
<td>27.8.z</td>
<td>Portuguese waters – West of the Non-NEAFC Reg. Area VII</td>
</tr>
</tbody>
</table>
Annex B: Species covered by ASCOBANS

<table>
<thead>
<tr>
<th>Code</th>
<th>Common name</th>
<th>Scientific name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWSD</td>
<td>Atlantic white-sided dolphin</td>
<td>Lagenorhynchus acutus</td>
</tr>
<tr>
<td>BBW</td>
<td>Blainville’s beaked whale</td>
<td>Mesoplodon densirostris</td>
</tr>
<tr>
<td>BD</td>
<td>Bottlenose dolphin</td>
<td>Tursiops truncatus</td>
</tr>
<tr>
<td>CBW</td>
<td>Cuvier’s beaked whale</td>
<td>Ziphius cavirostris</td>
</tr>
<tr>
<td>CD</td>
<td>Short-beaked Common Dolphin</td>
<td>Delphinus delphis</td>
</tr>
<tr>
<td>FKW</td>
<td>False killer whale</td>
<td>Pseudorca crassidens</td>
</tr>
<tr>
<td>GBW</td>
<td>Gervais’ beaked whale</td>
<td>Mesoplodon europaeus</td>
</tr>
<tr>
<td>HP</td>
<td>Harbour Porpoise</td>
<td>Phocoena phocoena</td>
</tr>
<tr>
<td>KW</td>
<td>Killer Whale</td>
<td>Orcinus orca</td>
</tr>
<tr>
<td>LFPW</td>
<td>Long-finned pilot whale</td>
<td>Globicephala melas</td>
</tr>
<tr>
<td>NBW</td>
<td>Northern bottlenose whale</td>
<td>Hyperoodon ampullatus</td>
</tr>
<tr>
<td>PKW</td>
<td>Pygmy killer whale</td>
<td>Feresa attenuata</td>
</tr>
<tr>
<td>PSW</td>
<td>Pygmy sperm whale</td>
<td>Kogia breviceps</td>
</tr>
<tr>
<td>RD</td>
<td>Risso’s dolphin</td>
<td>Grampus griseus</td>
</tr>
<tr>
<td>RTD</td>
<td>Rough-toothed dolphin</td>
<td>Steno bredanensis</td>
</tr>
<tr>
<td>SBW</td>
<td>Sowerby’s beaked whale</td>
<td>Mesoplodon bidens</td>
</tr>
<tr>
<td>SD</td>
<td>Striped dolphin</td>
<td>Stenella coeruleolbna</td>
</tr>
<tr>
<td>SFPW</td>
<td>Short-finned pilot whale</td>
<td>Globicephala macrorhynchus</td>
</tr>
<tr>
<td>TBW</td>
<td>True’s beaked whale</td>
<td>Mesoplodon mirus</td>
</tr>
<tr>
<td>WBD</td>
<td>White-beaked dolphin</td>
<td>Lagenorhynchus albirostris</td>
</tr>
</tbody>
</table>

Drop down menu small cetacean species:
Choose an item.
<table>
<thead>
<tr>
<th>Species</th>
<th>Number of bycaught animals observed</th>
<th>Year (incl. season if available)</th>
<th>Gear type</th>
<th>Area</th>
<th>Overall sampling effort</th>
<th>Monitoring method used</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>12</td>
<td>2021</td>
<td>PTM</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>2</td>
<td>2021</td>
<td>GNS</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>17</td>
<td>2021</td>
<td>GTR</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>2</td>
<td>2021</td>
<td>GTR</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>4</td>
<td>2021</td>
<td>GNS</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>SD Striped dolphin</td>
<td>1</td>
<td>2021</td>
<td>OTB</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>BD Bottlenose dolphin</td>
<td>2021</td>
<td></td>
<td></td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>cetacean non identified</td>
<td>1</td>
<td>2021</td>
<td>PTM</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>cetacean non identified</td>
<td>4</td>
<td>2021</td>
<td>GNS</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>cetacean non identified</td>
<td>1</td>
<td>2021</td>
<td>SDN</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>cetacean non identified</td>
<td>11</td>
<td>2021</td>
<td>GTR</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>8</td>
<td>2021</td>
<td>PTM</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>3</td>
<td>2021</td>
<td>OTB</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>52</td>
<td>2021</td>
<td>GNS</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>13</td>
<td>2021</td>
<td>GTR</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>1</td>
<td>2021</td>
<td>GTN</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>5</td>
<td>2021</td>
<td>GNS</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>6</td>
<td>2021</td>
<td>GTR</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>Species</td>
<td>Number of bycaught animals observed</td>
<td>Year (incl. season if available)</td>
<td>Gear type</td>
<td>Area</td>
<td>Overall sampling effort</td>
<td>Monitoring method used</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------------------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>SD Striped dolphin</td>
<td>1</td>
<td>2021</td>
<td>OTB</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>cetacean non identified</td>
<td>1</td>
<td>2021</td>
<td>PTM</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>cetacean non identified</td>
<td>1</td>
<td>2021</td>
<td>TBN</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>cetacean non identified</td>
<td>4</td>
<td>2021</td>
<td>GNS</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>cetacean non identified</td>
<td>6</td>
<td>2021</td>
<td>GTR</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>1</td>
<td>2021</td>
<td>GTR</td>
<td>27.7.e</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>1</td>
<td>2021</td>
<td>GTR</td>
<td>27.7.h</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>2</td>
<td>2021</td>
<td>Unknown</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>CD Short-beaked Common dolphin</td>
<td>1</td>
<td>2021</td>
<td>GN</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>HP Harbour porpoise</td>
<td>1</td>
<td>2021</td>
<td>Unknown</td>
<td>27.8.b</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
<tr>
<td>cetacean non identified</td>
<td>3</td>
<td>2021</td>
<td>OTB</td>
<td>27.8.a</td>
<td>100%</td>
<td>Self-reporting by fishermen</td>
</tr>
</tbody>
</table>