OUTCOME

from the joint OSPAR-HELCOM workshop to examine possibilities for developing indicators for incidental bycatch of birds and marine mammals

Copenhagen, 3-5 of September 2019

ASCOBANS, 25th meeting of the Advisory Committee
Objectives & Aims of the workshops – division into subgroups

To develop methods to assess, for conservation purposes, the pressure of incidental bycatch of birds and marine mammals

- to identify data needs for carrying out assessments and data gaps
- to explore approaches to identify areas of high/low bycatch risk
- to identify approaches to setting thresholds for the indicator assessment method

Highlighting similarities and differences between marine mammals and birds

Identify next steps
MAMMALS

Abundance estimate & uncertainty
Bycatch time series & uncertainty
Growth rate
Population life history parameters

Abundance estimate & uncertainty
Growth rate (default value can be used for growth rate)
If depleted or declining choose a low recovery rate
Bycatch estimate

Depleted or declining pop

Adaptive management (every 6 years)

Data rich sp.
Yes

Data poor sp.
No

Yes

No

No quantitative assessment possible but descriptive analysis taking precautionary approach into account

Abundance time series & uncertainty
Bycatch time series & uncertainty
Growth rate
Population life history parameters

RLA

PB

R

Yes

Demographic aspects approach

Rule of thumb

Generation length <12 years (harbour porpoise)
Illustrative threshold
Xxx=0.5%

13-20 years (common dolphin)
Xxx=0.3%

>20 years (minke whale)
Xxx=0.2%

Anthropogenic removals should not exceed levels that exceed 0.50%/0.30%/0.20%* of the median population size within a specified time frame (e.g. 10 years) – for species with a generation length (in pre-disturbance conditions with an assumed stable population) of 12 years of less (e.g. harbour porpoise)/13-20 years (e.g. common dolphin)/>20 years (e.g. minke whale, humpback whale)

Anthropogenic removals threshold is 1% of natural annual adult mortality of the species

% of best population estimate based on RLA simulations (Hammond et al. 2018)
Alternatively take uncertainty of abundance estimate and bycatch rate into account if using an implicit conservation target