SAMSE:

A Stochastic Model to Set Sustainable Limits to Wildlife Mortality in a Changing World

Oliver Manlik, Robert C. Lacy,
William B. Sherwin, Hugh Finn,
Neil R. Loneragan, Simon J. Allen

جامعة الإمـارات العربيـة المتحدة

Extinction Vortex

Stochastic Events Accelerate Extinction Vortex

Stochastic Events Accelerate Extinction Vortex

Stochastic Events:
Random (chance) events that can affect population dynamics

- Demographic stochasticity random fluctuation in obs. birth rate, death rate \& sex ratio resulting from stochastic sampling processes

Stochastic Events Accelerate Extinction Vortex

Stochastic Events:
Random (chance) events that can affect population dynamics

- Demographic stochasticity
- Environmental stochasticity: fluctuation in probabilities of birth and death due to random fluctuations in the environment

Stochastic Events can affect Population growth (r)

Long-term growth rates can be negative even with average positive r, if variation in growth rate is high

$$
\text { mean } \mathrm{r}=0.125, \mathrm{SD}=0 \quad \text { mean } \mathrm{r}=0.125, \mathrm{SD}=0.55
$$

Time
Stochastic

Stochastic Events can affect Population growth (r)

Long-term growth rates can be negative even with average positive r, if variation in growth rate is high
mean $\mathrm{r}=0.125, \mathrm{SD}=0$
mean $\mathrm{r}=0.125, \mathrm{SD}=0.55$

But stochasticity is often ignored in simple population models (e.g. Leslie matrix), especially when determining sustainable limits to wildlife mortality

PILBARA FISH TRAWL FISHERY: BYCATCH OF BOTTLENOSE DOLPHINS

- Pilbara Fish Trawl Fishery (northern Western Australia) targets variety of scalefish species
- But also captures protected and threatened species, including bottlenose dolphins (Tursiops truncatus)

- Bycatch rates of bottlenose dolphins:
- Skippers' logbooks (2012-2017):
- Independent Observers (2002; 2006-2009): 50/yr (150/3-yr)
- Western Australian Department of Fisheries: 75/yr (225/3-yr) "number of dolphins caught by the fishery should be $<75 / y r$ "

STOCHASTIC POPULATION MODEL USING VORTEX

https://www.cpsg.org/vortex-more-detail

- Used Vortex for population modeling
- Set up standard 3-yr model of a stable bottlenose dolphin population without bycatch:
- Population size estimate from impacted Pilbara population
- Vital rates from stable bottlenose dolphin population (Shark Bay, Australia; Manlik et al. 2016)

STOCHASTIC POPULATION MODEL USING VORTEX

Set up bycatch scenarios based on estimated \& reported bycatch rates, PBR:

- 73.5/3-yr
- 150/3-yr
- 225/3-yr
- PBR: 48.57/3-yr (16.19/yr)
- Used Vortex for population modeling
- Set up standard 3-yr model of a stable bottlenose dolphin population without bycatch:
- Population size estimate from impacted Pilbara population
- Vital rates from stable bottlenose dolphin population (Shark Bay, Australia; Manlik et al. 2016)

INTRODUCING SAMSE: SUSTAINABLE ANTHROPOGENIC MORTALITY IN STOCHASTIC ENVIRONMENTS

HOW DID WE APPLY SAMSE?

- Used Vortex for population modeling to estimate SAMSE limit:
- Set up standard model of a stable bottlenose dolphin population without bycatch:
- Population size estimate from impacted Pilbara population
- Vital rates from stable bottlenose dolphin population (Shark Bay, Australia; Manlik et al. 2016)

HOW DID WE APPLY SAMSE?

- Used Vortex for population modeling to estimate SAMSE limit:
- Set up standard model of a stable bottlenose dolphin population without bycatch:
- Population size estimate from impacted Pilbara population
- Vital rates from stable bottlenose dolphin population (Shark Bay, Australia; Manlik et al. 2016)
- Incorporated Stochasticity:
- Demographic stochasticity:

Used Vortex to set occurrence of probabilistic events (based on specified probabilities, e.g. reproduction \& sex ratios) with pseudo-random number generator

HOW DID WE APPLY SAMSE?

- Used Vortex for population modeling to estimate SAMSE limit:
- Set up standard model of a stable bottlenose dolphin population without bycatch:
- Population size estimate from impacted Pilbara population
- Vital rates from stable bottlenose dolphin population (Shark Bay, Australia; Manlik et al. 2016)
- Incorporated Stochasticity:
- Demographic stochasticity:

Used Vortex to set occurrence of probabilistic events (based on specified probabilities, e.g. reproduction \& sex ratios) with pseudo-random number generator

- Dependency of offspring on fate of parent(s) (e.g. dolphin calves that are dependent on mothers):

Adjusted setting, so the model removes any calves whose mothers die

HOW DID WE APPLY SAMSE?

- Used Vortex for population modeling to estimate SAMSE limit:
- Set up standard model of a stable bottlenose dolphin population without bycatch:
- Population size estimate from impacted Pilbara population
- Vital rates from stable bottlenose dolphin population (Shark Bay, Australia; Manlik et al. 2016)
- Incorporated Stochasticity:
- Demographic stochasticity:

Used Vortex to set occurrence of probabilistic events (based on specified probabilities, e.g. reproduction \& sex ratios) with pseudo-random number generator

- Dependency of offspring on fate of parent(s) (e.g. dolphin calves that are dependent on mothers):

Adjusted setting, so the model removes any calves whose mothers die

- Environmental stochasticity:

Applied 3-yr standard deviations due to environmental variance ($\mathrm{SD}_{\mathrm{EV}}$) for age-specific mortality rates and reproductive rates, as reported for stable population (Shark Bay)

HOW DID WE APPLY SAMSE?

- Used Vortex for population modeling to estimate SAMSE limit:
- Set up standard model of a stable bottlenose dolphin population without bycatch:
- Population size estimate from impacted Pilbara population
- Vital rates from stable bottlenose dolphin population (Shark Bay, Australia; Manlik et al. 2016)
- Incorporated Stochasticity:
- Demographic stochasticity:

Used Vortex to set occurrence of probabilistic events (based on specified probabilities, e.g. reproduction \& sex ratios) with pseudo-random number generator

- Dependency of offspring on fate of parent(s) (e.g. dolphin calves that are dependent on mothers):

Adjusted setting, so the model removes any calves whose mothers die

- Environmental stochasticity:

Applied 3-yr standard deviations due to environmental variance ($\mathrm{SD}_{\mathrm{EV}}$) for age-specific mortality rates and reproductive rates, as reported for stable population (Shark Bay)

- Ran trial scenarios that included the removal of a set number of individuals until we reached forecasts that produced non-negative stochastic growth rates, i.e. the SAMSE limit

SAMSE RESULTS

SAMSE $\approx 2-8$ removals/year
(7-24 per 3-yrs)

PBR vs SAMSE

PBR (Wade, 1998)
$N_{\text {MIN }}\left(R_{\text {MAX }} / 2\right) F_{R}$
$N_{\text {MIN }}=1,619$
$R_{\text {MAX }}=0.04$ (default for cetaceans)
$F_{R}=0.5$ (Wade, 1998)
THUS PBR =
$1,619 \times(0.04 / 2) \times 0.5=16.19$

N_{0}				SAMSE		$r_{\text {det }}$	$r_{\text {stoch }}$
1,619	$\mathbf{2 . 3 3}$	0.0004	$\mathbf{0 . 0 0 0 1}$				
2,953	$\mathbf{4 . 3 3}$	0.0003	$\mathbf{0 . 0 0 0 1}$				
5,473	$\mathbf{8}$	0.0003	$\mathbf{0 . 0 0 0 1}$				

N_{0}	SAMSE $+\mathbf{1}$	$r_{\text {det }}$	$r_{\text {stoch }}$
1,619	$\mathbf{2 . 6 7}$	-0.0003	-0.0007
2,953	$\mathbf{4 . 6 7}$	-0.0001	-0.0004
5,473	$\mathbf{8 . 3 3}$	0.0001	-0.0003

$P B R^{*} \approx 16$ removals/year

 (48-49 per 3-yrs)SAMSE \approx 2-8 removals/year
(7-24 per 3-yrs)

[^0]
PBR vs SAMSE

PBR (Wade, 1998)
$N_{\text {MIN }}\left(R_{\text {MAX }} / 2\right) F_{R}$
$N_{\text {MIN }}=1,619$
$R_{M A X}=0.04$ (default for cetaceans)
$F_{R}=0.5$ (Wade, 1998)
THUS PBR =
$1,619 \times(0.04 / 2) \times 0.5=16.19$
$P B R \approx 16$ removals/year (48-49 per 3-yrs)

TO REACH OR MAINTAIN
"OPTIMUM SUSTAINABLE POPULATION"

N_{0}						
SAMSE					$r_{\text {det }}$	$r_{\text {stoch }}$
1,619	$\mathbf{2 . 3 3}$	0.0004	$\mathbf{0 . 0 0 0 1}$			
2,953	$\mathbf{4 . 3 3}$	0.0003	$\mathbf{0 . 0 0 0 1}$			
5,473	$\mathbf{8}$	0.0003	$\mathbf{0 . 0 0 0 1}$			
N_{0}	SAMSE +1	$r_{\text {det }}$	$r_{\text {stoch }}$			
1,619	$\mathbf{2 . 6 7}$	-0.0003	$\mathbf{- 0 . 0 0 0 7}$			
2,953	$\mathbf{4 . 6 7}$	-0.0001	$\mathbf{- 0 . 0 0 0 4}$			
5,473	$\mathbf{8 . 3 3}$	0.0001	$\mathbf{- 0 . 0 0 0 3}$			

N_{0}						
SAMSE					$r_{\text {det }}$	$r_{\text {stoch }}$
1,619	$\mathbf{2 . 3 3}$	0.0004	$\mathbf{0 . 0 0 0 1}$			
2,953	$\mathbf{4 . 3 3}$	0.0003	$\mathbf{0 . 0 0 0 1}$			
5,473	$\mathbf{8}$	0.0003	$\mathbf{0 . 0 0 0 1}$			
N_{0}	SAMSE +1	$r_{\text {det }}$	$r_{\text {stoch }}$			
1,619	$\mathbf{2 . 6 7}$	-0.0003	$\mathbf{- 0 . 0 0 0 7}$			
2,953	$\mathbf{4 . 6 7}$	-0.0001	$\mathbf{- 0 . 0 0 0 4}$			
5,473	$\mathbf{8 . 3 3}$	0.0001	$\mathbf{- 0 . 0 0 0 3}$			

SAMSE \approx 2-8 removals/year
(7-24 per 3-yrs)

TO REACH OR MAINTAIN
POPULATION STABILITY IN STOCHASTIC ENVIRONMENT

SAMSE

SAMSE

SAMSE

WHAT IS SAMSE?

- Sustainable Anthropogenic Mortality in Stochastic Environments
- SAMSE is a population modelling approach that incorporates stochasticity to estimate sustainable limits to human-caused mortality of wildlife (not only bycatch!)
- SAMSE-limit: The maximum number of individuals that can be removed by human activity, without resulting in negative stochastic growth rate forecasts
- Removing one more individual per year would result in a population decline, i.e. a negative stochastic $r(=S A M S E+1)$
- SAMSE allows us to incorporate stochasticity in the following ways:
- Demographic stochasticity
- Environmental stochasticity
- Dependency of offspring on fate of parent(s) (e.g. dolphin calves that are dependent on mothers)

ADVANTAGES \& LIMITATIONS OF SAMSE

- SAMSE can incorporate demographic stochasticity \& environmental stochasticity
- SAMSE can incorporate surrogate data from well-studied, stable reference populations, i.e. does not require lots of data from impacted population
- SAMSE is broadly applicable to a large range of taxa and situations (not only bycatch)
- SAMSE can be performed using various off-the-shelf modeling software that allows the incorporation of stochastic factors, e.g. Vortex*, Ramas

ADVANTAGES \& LIMITATIONS OF SAMSE

- SAMSE can incorporate demographic stochasticity \& environmental stochasticity
- SAMSE can incorporate surrogate data from well-studied, stable reference populations, i.e. does not require lots of data from impacted population
- SAMSE is broadly applicable to a large range of taxa and situations (not only bycatch)
- SAMSE can be performed using various off-the-shelf modeling software that allows the incorporation of stochastic factors, e.g. Vortex*, Ramas
- SAMSE often requires surrogate data from reference population:
- taxonomically \& demographically similar to human-affected population;
- well-studied,
- stable (in the absence of bycatch or other human-caused mortality)

ADVANTAGES \& LIMITATIONS OF SAMSE

- SAMSE can incorporate demographic stochasticity \& environmental stochasticity
- SAMSE can incorporate surrogate data from well-studied, stable reference populations, i.e. does not require lots of data from impacted population
- SAMSE is broadly applicable to a large range of taxa and situations (not only bycatch)
- SAMSE can incorporate other threats (pollution, etc.); (akin to changing RMAX)
- SAMSE can be performed using various off-the-shelf modeling software that allows the incorporation of stochastic factors, e.g. Vortex*, Ramas
- SAMSE often requires surrogate data from reference population:
- taxonomically \& demographically similar to human-affected population;
- well-studied,
- stable (in the absence of bycatch or other human-caused mortality)
*PLAN:
- Incorporate module into Vortex to report SAMSE-limit
- Create "library" of preconfigured baseline Vortex models for various species

THANKS FOR YOUR INTEREST!

Oliver Manlik (UAEU), Robert C Lacy, William B Sherwin, Hugh Finn, Neil R Loneragan, Simon J Allen

Conservation Biology

CONTRIBUTED PAPERS 自 Open Access (c) (i)
A stochastic model for estimating sustainable limits to wildlife mortality in a changing world

Oliver Manlik Robert C. Lacy, William B. Sherwin, Hugh Finn, Neil R. Loneragan, Simon J. Allen
First published: 04 February 2022 | https://doi.org/10.1111/cobi.13897
IUCN Conservation Planning Specialist Group, Species Conservation Toolkit Initiative SCTI: SAMSE to be incorporated into VORTEX

THANKS FOR YOUR INTEREST!

Oliver Manlik (UAEU)
Opportunities for PhD at United Arab Emirates University:

- Population genomics fish (sardines, tuna)
- Gene expression in response to climate change (Tigriopus)

Contact me:

oliver.manlik@uaeu.ac.ae
Twitter: @Omanlik

WHAT IS EFFECT OF STOCHASTICITY ON FORECASTS?

With Stochasticity With Env Stochasticity NO Stochasticity

Growth rate (r) -0.0233 to $-0.0972-0.0199$ to $-0.0860-0.0196$ to -0.0832 $\%$ Change -17% to $-23 \% \quad-2 \%$ to -7% NA

- Incorporating stochasticity substantially lowers population growth (by 17 to 23%), depending on population size
- Large effect of demographic stochasticity, in particular calf-mother dependency

POTENTIAL BIOLOGICAL REMOVAL (PBR)

- PBR estimates maximum number of animals that may be removed from a "stock" while allowing that stock to reach or maintain its "optimum sustainable population"
- PBR is considered to provide a conservative limit for human-caused mortality
- US Marine Mammal Protection Act (MMPA, 1972) provides statutory framework for PBR concept

$$
\begin{aligned}
& \text { PBR (Wade, 1998): } \\
& \boldsymbol{N}_{\text {MIN }}\left(\boldsymbol{R}_{\text {MAX }} \mathbf{2}\right) \boldsymbol{F}_{\boldsymbol{R}} \\
& N_{\text {MIN }}=\text { Min } N \text { estimate } \\
& R_{\text {MAX }}=0.04 \text { (default for } \\
& \text { cetaceans) } \\
& F_{R}=0.5 \text { (Wade, 1998) }
\end{aligned}
$$

POTENTIAL BIOLOGICAL REMOVAL (PBR)

- PBR estimates maximum number of animals that may be removed from a "stock" while allowing that stock to reach or maintain its "optimum sustainable population"
- PBR is considered to provide a conservative limit for human-caused mortality
- US Marine Mammal Protection Act (MMPA, 1972) provides statutory framework for PBR concept
- Original equation/model is deterministic-i.e. does not incorporate stochasticity

$$
\begin{aligned}
& \text { PBR (Wade, 1998): } \\
& \boldsymbol{N}_{\text {MIN }}\left(\boldsymbol{R}_{\text {MAX }} \mathbf{2}\right) \boldsymbol{F}_{\boldsymbol{R}} \\
& \boldsymbol{N}_{\text {MIN }}=\text { Min } N \text { estimate } \\
& R_{\text {MAX }}=0.04 \text { (default for } \\
& \text { cetaceans) } \\
& F_{R}=0.5 \text { (Wade, 1998) }
\end{aligned}
$$

POTENTIAL BIOLOGICAL REMOVAL (PBR)

$P B R$ (Wade, 1998):
$N_{\text {MIN }}\left(\boldsymbol{R}_{\text {MAX }} / \mathbf{2}\right) F_{R}$
$N_{\text {MIN }}=\mathbf{1}, 619$
$R_{\text {MAX }}=\mathbf{0 . 0 4}$ (default for
cetaceans)
$F_{R}=\mathbf{0 . 5}$ (Wade, 1998)

THUS PBR =
$1,619 \times(0.04 / 2) \times 0.5=\underline{16.19}$

PBR ≈ 16 removals/year (48-49 per 3-yrs)

TO REACH OR MAINTAIN "OPTIMUM SUSTAINABLE POPULATION"

Photo: Claire Daniel

POTENTIAL BIOLOGICAL REMOVAL (PBR)

PBR (Wade,1998):

"The model used is deterministic rather than stochastic..."
"it would be useful to investigate the effects of stochastic dynamics through simulations which incorporated plausible levels of environmental variance"

Impacted
 Population

Parameters may include:

- Abundance estimates
- Carrying capacity
- Fishery bycatch rates
(a) Demographic

Stochasticity:
Emerges from simulated occurrence of events based on specified probabilities

SAMSE:
$r_{\text {stoch }} \geq 0$

Stable Reference
Population
Parameters may include:

- Mortality rates
- Reproductive rates
- Age class distribution
(b) Environmental Stochasticity:
Incorporate vital rate $\mathrm{SD}_{\mathrm{Ev}}$:
$\mathrm{SD}_{\mathrm{EV}}=\sqrt{\sigma_{\text {Tot }}^{2}-\sigma_{\text {Samp }}^{2}}$ Use binomial (or beta) distributions to sample annual value from mean and $\mathrm{SD}_{\mathrm{EV}}$

SAMSE +1 :
$r_{\text {stoch }}<0$

[^0]: *Potential Biological Removal (conventional method without stochasticity)

