A negative trend in abundance and an exceeded mortality limit call for conservation action for the Vulnerable Belt Sea harbour porpoise population

Owen, K., Gilles, A., Authier, M., Carlström, J., Genu, M., Kyhn, L.A., Nachtsheim, D.A., Ramírez-Martínez, N.C., Siebert, U., Sköld, M., Teilmann, J., Unger, B., Sveegaard, S.
2024. Frontiers in Marine Science 11

Line-transect surveys

- Six surveys 1994-2022
- Ship-based and/or aerial
- All corrected for observer and porpoise availability bias
- Differences in survey area:
- 1994 not included in trend analysis
- 2005, 2012 post-stratified

Bayesian trend analysis

- Incorporates all sources of uncertainty
- High CV \rightarrow low influence, low CV \rightarrow high influence
- 2005-2022 $=18$ years
- Trend: -2.68\% (95\% CI -4.13 to +1.26\%)/year
- 90.5% probability of a negative trend

Mortality limit calculation

Population model based on:

- Bycatch vulnerability sex ratio
- Birth rate sex ratio
- Age distribution sexually mature females
- Max longevity
- Age-specific bycatch risk
- Age-specific survival ${ }^{N}$
$N=$ from North Sea pop

Mortality limit calculation

1. Run the model for unmanaged bycatch for 60 years until today (1963-2022). Aim: Get starting points to calculate scenarios for today's depleted population.
2. Run the model managed bycatch during 100 years from today (2022-2121). Managed = no bycatch above mPBR mortality limit: $N_{\text {min }} * 1 / 2 R_{\text {max }} * F_{r}$ Test recovery factor $\left(F_{\mathrm{r}}\right)=0.1,0.2, \ldots, 1.0$.
Aim: Find which F_{r} is needed to reach the conservation goal.
3. Calculate mPBR limit using the F_{r} needed to reach the conservation goal.

Mortality limit calculation

Step 1: Run model during unmanaged bycatch, i.e. up to today

- Rough starting point $\mathrm{K}=50,000$ animals
- Stochastic removals 0.1% to 5% of K
- Run model 10,000 times for 60 years
- Selected all end points $30 \%-70 \%$ of K = starting points in step 2

Mortality limit calculation

Step 2: Run the model during managed bycatch, calculating future scenarios, using:

- End points from step 1 as starting points
- Base-case scenario no bias + bias in 8 single parameters + bias in 2 parameters, for CV abundance $=0.2$ and $0.4 \Rightarrow 20$ combinations
- For F_{r} from 0.1, 0.2 ... 1.0
- Run for 100 years
- Check which F_{r} is needed to reach the conservation objective $80 \% \mathrm{~K}$ with 80% probability in 100 years

Base-case scenario: CV abundance $=0.2$, no other bias (all default values), $\mathrm{F}_{\mathrm{r}}=0.1$

B

Finding Fr for base-case scenario with $\mathrm{CV}=0.2$: $\mathrm{Fr}=0.2$ is OK

Robustness trial	Scenario	n	q	MNPL	$\mathrm{K}_{\text {trend }}$	Frequency	$\mathrm{R}_{\text {max }}$	CV	b.byc	b.abund	b. $\mathrm{R}_{\text {max }}$	byc.CV	cata.	F_{r}
Base case scenario	0A	302	0.2	0.5	1	6	0.04	0.2	1	1	1	0.3	0	0.2
	0B	298	0.2	0.5	1	6	0.04	0.4	1	1	1	0.3	0	0.3
Bycatch underestimation	1A	302	0.2	0.5	1	6	0.04	0.2	2	1	1	0.3	0	0.1
	1B	298	0.2	0.5	1	6	0.04	0.4	2	1	1	0.3	0	0.1
Abundance overestimation	2A	302	0.2	0.5	1	6	0.04	0.2	1	2	1	0.3	0	0.1
	2B	298	0.2	0.5	1	6	0.04	0.4	1	2	1	0.3	0	0.1
Maximum Productivity rate underestimation	3A	302	0.2	0.5	1	6	0.04	0.2	1	1	0.5	0.3	0	0.4
	3B	298	0.2	0.5	1	6	0.04	0.4	1	1	0.5	0.3	0	0.6
Higher bycatch coefficient of variation	5A	302	0.2	0.5	1	6	0.04	0.2	1	1	1	1.2	0	0.2
	5B	298	0.2	0.5	1	6	0.04	0.4	1	1	1	1.2	0	0.2
Lower survey frequency	6A	302	0.2	0.5	1	10	0.04	0.2	1	1	1	0.3	0	0.2
	6B	298	0.2	0.5	1	10	0.04	0.4	1	1	1	0.3	0	0.2
Lower MNPL	7A	289	0.2	0.45	1	6	0.04	0.2	1	1	1	0.3	0	NA
	7B	311	0.2	0.45	1	6	0.04	0.4	1	1	1	0.3	0	0.1
Higher MNPL + bycatch underestimation	8A	298	0.2	0.7	1	6	0.04	0.2	2	1	1	0.3	0	0.4
	8B	302	0.2	0.7	1	6	0.04	0.4	2	1	1	0.3	0	0.4
Catastrophic events happening	9A	302	0.2	0.5	1	6	0.04	0.2	1	1	1	0.3	0.1	0.2
	9B	298	0.2	0.5	1	6	0.04	0.4	1	1	1	0.3	0.1	0.2
Carrying capacity degradation	10A	302	0.2	0.5	0.5	6	0.04	0.2	1	1	1	0.3	0	0.4
	10B	298	0.2	0.5	0.5	6	0.04	0.4	1	1	1	0.3	0	0.5

Mortality limit results

- $\mathrm{N}_{\text {min }}=12,091$ animals, from SCANSIV (14,403; CV = 0.21)
F_{r} needed to reach conservation objective with $\mathrm{CV}=0.2$:
- 3 scenarios: $\mathrm{F}_{\mathrm{r}}=0.4$
- 7 scenarios: $F_{r}=0.1$ or 0.2
- Bycatch underestimation scenario:
$F_{r}=0.1$
- Step 3: $\mathrm{mPBR}=\mathrm{N}_{\text {min }} * 1 / 2 \mathrm{R}_{\max } * \mathrm{~F}_{\mathrm{r}}$

Conclusions

- Population is in decline
- Mortality limit to reach conservation objective with bias in e.g. bycatch: 24 animals/year
- Current bycatch in DK and SE, excluding DE: ~900 animals/year
- Confirm Vulnerable status, conservation actions needed

